• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Memory-based Hardware-intrinsic Security Mechanisms for Device Authentication in Embedded Systems

Soubhagya Sutar (9187907) 30 July 2020 (has links)
<div>The Internet-of-Things (IoT) is one of the fastest-growing technologies in computing, revolutionizing several application domains such as wearable computing, home automation, industrial manufacturing, <i>etc</i>. This rapid proliferation, however, has given rise to a plethora of new security and privacy concerns. For example, IoT devices frequently access sensitive and confidential information (<i>e.g.,</i> physiological signals), which has made them attractive targets for various security attacks. Moreover, with the hardware components in these systems sourced from manufacturers across the globe, instances of counterfeiting and piracy have increased steadily. Security mechanisms such as device authentication and key exchange are attractive options for alleviating these challenges.</div><div><br></div><div>In this dissertation, we address the challenge of enabling low-cost and low-overhead device authentication and key exchange in off-the-shelf embedded systems. The first part of the dissertation focuses on a hardware-intrinsic mechanism and proposes the design of two Physically Unclonable Functions (PUFs), which leverage the memory (DRAM, SRAM) in the system, thus, requiring minimal (or no) additional hardware for operation. Two lightweight authentication and error-correction techniques, which ensure robust operation under wide environmental and temporal variations, are also presented. Experimental results obtained from prototype implementations demonstrate the effectiveness of the design. The second part of the dissertation focuses on the application of these techniques in real-world systems through a new end-to-end authentication and key-exchange protocol in the context of an Implantable Medical Device (IMD) ecosystem. Prototype implementations exhibit an energy-efficient design that guards against security and privacy attacks, thereby making it suitable for resource-constrained devices such as IMDs.</div><div><br></div>
2

Design Techniques for Secure IoT Devices and Networks

Malin Priyamal Prematilake (12201746) 25 July 2023 (has links)
<p>The rapid expansion of consumer Internet-of-Things (IoT) technology across various application domains has made it one of the most sought-after and swiftly evolving technologies. IoT devices offer numerous benefits, such as enhanced security, convenience, and cost reduction. However, as these devices need access to sensitive aspects of human life to function effectively, their abuse can lead to significant financial, psychological, and physical harm. While previous studies have examined the vulnerabilities of IoT devices, insufficient research has delved into the impact and mitigation of threats to users' privacy and safety. This dissertation addresses the challenge of protecting user safety and privacy against threats posed by IoT device vulnerabilities. We first introduce a novel IWMD architecture, which serves as the last line of defense against unsafe operations of Implantable and Wearable Medical Devices (IWMDs). We demonstrate the architecture's effectiveness through a prototype artificial pancreas. Subsequent chapters emphasize the safety and privacy of smart home device users. First, we propose a unique device activity-based categorization and learning approach for network traffic analysis. Utilizing this technology, we present a new smart home security framework and a device type identification mechanism to enhance transparency and access control in smart home device communication. Lastly, we propose a novel traffic shaping technique that hinders adversaries from discerning user activities through traffic analysis. Experiments conducted on commercially available IoT devices confirm that our solutions effectively address these issues with minimal overhead.</p>

Page generated in 0.3842 seconds