1 |
PI Control of Gene Expression in Tumorous Cell LinesMendonca, Rouella J. 16 January 2010 (has links)
Recent experiments are bringing to the fore more and more information about the
effects of different treatments on the gene expression of different genes. The results
obtained from these experiments show that some definite trends are observed in different
genes in the Human Embryonic Kidney and Human Colon Adenocarcinoma Grade II
cell lines. The difference in the gene expressions of the two cell lines motivates the
problem in this thesis. The thesis provided intervention methods to make the colon
cancer cell line genes behave more like their Human Embryonic Kidney cell line
counterparts. Two methods of intervention were introduced. The first method was the
simpler on-off control intervention while the second method used a more advanced
proportional integral control to meet the goal. A comparison of these two intervention
methods showed the clear implementational advantages of proportional integral control
over on-off control.
|
2 |
An Adaptive Proportional-Integral Controller for Power Management of 3D Graphics System-On-ChipJheng, Hao-Yi 31 July 2009 (has links)
In the past few years, due to the rapid advance in technology and the aid of 3D graphics applications the world of 3D graphics is rapidly expanding from desktop computers and dedicated gaming consoled to handheld devices, such as cellular phones, PDAs, laptops etc.,. However, unlike traditional desktop computers and gaming consoles, mobile computing devices typically have slower processors that have less capability for handling large computation-intensive workloads like 3D graphics application. In addition, the power consumption is one of the major design specifications to realize the 3D graphics accelerating engine for mobile devices because handheld batteries have limited lifetimes. Moreover, the size of chip is depend on the Moore¡¦s Law: The number of transistors in a chip are double in every eighteen months. Even though the produce cost is decrease, but the capacity of battery cannot increase like the transistors. Therefore, how to reduce power consumption by using efficient power management techniques has become a very important research topic in 3D graphics SoC design.
For 3D graphics applications, dynamic voltage and frequency scaling (DVFS) is a good candidate to reduce the power consumption of 3D graphics accelerating engine. So many relative papers have researched in how to accurately predict the workload and scale the voltage and frequency. The prediction policy can divide into History-based predictor [1] and Frame-structure predictor [2-4]. The History-based predictor predicts the latter frame workload by previous frame workload to scale the voltage, and the frame-structure predictor performs offline and then determine the different kind of frame for an application. A table is used to save the mapping of different kind of frame to the voltage, and then the voltage is scaled according to the mapping table. A lot of researchers put the power management policy in software i.e. processors, but our proposed workload prediction scheme has been realized into the hardware circuit. Therefore, it can not only reduce the overhead of processor but also quickly adjust the voltage and frequency of 3D graphics accelerating engine. Our prediction policy is one of the History-based predictor ,and it is an adaptive PID predictor [5-6] in which the parameters of Proportional controller and Integral controller can be adaptively adjusted so that it can obtain more accurate prediction results than non-adaptive predictor.
In general, the workload that the selected voltage can handle is usually over than the predicted workload. That is, actual workload is usually less than predicted workload. So that the slack time will be generated. We can utilize the slack time through Inter-frame compensation [7-10] to save more energy while maintaining the similar output quality. We use a simple policy to adaptively select the parameters for compensation between the frames to simplify the hardware architecture of the power management policy. Experimental results show that, we can get more energy saving and more accurate workload prediction when the adaptive PI predictor and adaptive Inter-frame compensation are utilized.
|
3 |
Nonnegative feedback systems in population ecologyBill, Adam January 2016 (has links)
We develop and adapt absolute stability results for nonnegative Lur'e systems, that is, systems made up of linear part and a nonlinear feedback in which the state remains nonnegative for all time. This is done in both continuous and discrete time with an aim of applying these results to population modeling. Further to this, we consider forced nonnegative Lur'e systems, that is, Lur'e systems with an additional disturbance, and provide results on input-to-state stability (ISS), again in both continuous and discrete time. We provide necessary and sufficient conditions for a forced Lur'e system to have the converging-input converging-state (CICS) property in a general setting before specializing these results to nonnegative, single-input, single-output systems. Finally we apply integral control to nonnegative systems in order to control the output of the system with the key focus being on applications to population management.
|
4 |
Developing of Robust Integral Velocity-stabilizing Controller for Permanent Magnet Synchronous Motor DriverLai, Chun-Ting 14 February 2012 (has links)
The objective of this thesis is to design and implement a velocity-stabilizing driver for permanent magnet synchronous motor. The research presents how to achieve high efficiency in stabilizing overall velocity for a permanent magnet synchronous motor. In order to drive the integral system, there are six steps square-wave starting device, sine-wave driver, estimation of magnetic angle, velocity feedback and current feedback control circuits designed. A test platform is built by Microchip-made dsPIC33FJ128MC804 digital signal processor used as a control core. ¡§Simulink¡¨ simulator is used during the laboratory test. The simulation results are compared with those of experiments in order to verify the achievement of excellent performance of Robust Integral Velocity-stabilizing Controller on Permanent Magnet Synchronous Motor Driver.
|
5 |
STATE-VARIABLE FEEDBACK CONTROL OF A MAGNETICALLY SUSPENDED CENTRIFUGAL BLOOD PUMPSelby, Normajean 13 September 2007 (has links)
No description available.
|
6 |
On-line periodic scheduling of hybrid chemical plants with parallel production lines and shared resourcesSimeonova, Iliyana 28 August 2008 (has links)
This thesis deals with chemical plants constituted by parallel batch-continuous production lines with shared resources.
For such plants, it is highly desirable to have optimal operation schedules which determine the starting times of the various batch processes and the flow rates of the continuous processes in order to maximize the average plant productivity and to have a continuous production without interruptions. This optimization problem is constrained by the limitation of the resources that are shared by the reactors and by the capacities of the various devices that constitute the plant.
Such plants are "hybrid" by nature because they combine both continuous-time dynamics and discrete-event dynamics. The formalism of "Hybrid Automata" is there fore well suited for the design of plant models.
The first contribution of this thesis is the development of a hybrid automaton model of the chemical plant in the Matlab-Simulink-Stateflow environment and its use for the design of an optimal periodic schedule that maximises the plant productivity. Using a sensitivity analysis and the concept of Poincaré; map, it is shown that the optimal schedule is a stable limit cycle of the hybrid system that attracts the system trajectories starting in a wide set of initial conditions.
The optimal periodic schedule is valid under the assumption that the hybrid model is an exact description of the plant. Under perturbations on the plant parameters, it is shown that two types of problems may arise. The first problem is a drift of the hybrid system trajectory which can either lead to a convergence to a new stable sub-optimal schedule or to a resource conflict. The second problem is a risk of overflow or underflow of the output buffer tank. The second contribution of the thesis is the analysis of feedback control strategies to avoid these problems. For the first problem, a control policy based on a model predictive control (MPC) approach is proposed to avoid resource conflicts. The feedback control is run on - line with the hybrid Simulink-Stateflow simulator used as an internal model. For the solution of the second problem, a classical PI control is used. The goal is not only to avoid over- or under-filling of the tank but also to reduce the amplitude of outflow rate variations as much as possible. A methodological analysis for the PI controller tuning is presented in order to achieve an acceptable trade-off between these conflicting objectives.
|
7 |
Operação do gerador de indução em conexão assíncrona com a rede monofásica / Induction Generator Asynchronously connected to a single phase networkLIMA, Nelio Neves 26 March 2010 (has links)
Made available in DSpace on 2014-07-29T15:08:24Z (GMT). No. of bitstreams: 1
Dissertacao Nelio Neves.pdf: 3219323 bytes, checksum: 942eb8a565f853723f37d1f40fe87298 (MD5)
Previous issue date: 2010-03-26 / This text reports the effort to present a proposal of a power generation system based on cage rotor Induction Electrical Machine associated to a sinusoidally-switched PWM (Pulse Width Modulation) frequency converter responsible for maintaining constant 60 Hz frequency at the generator leads. DC side at the PWM converter is nonsynchronously connected to a single-phase utility line by means of a full-bridge current-fed thyristor inverter, employing a step-down DC-DC converter in order to turn the grid injected current into a sinusoidal waveform. The proposed system allows for the operation as cogenerator in sites fed by single-phase utility net where there is availability of energetic resources. The DC capacitor voltage (Vdc) is controlled through the DC side energy balance adjusting the amplitude of the active current sent to the utility grid. The control strategy employed was the analogic proportional-integral (PI) error compensation. The system is also able to act as reactive power compensator to the AC loads as the Cdc capacitor represents a voltage source to the inverter and the three-phase diode bridge allows for bidirectional power flow between AC and DC sides. Simulation and experimental results has corroborated system viability to provide three-phase balanced regulated voltages complying with ANEEL 505/2001 Resolution and with IEEE Std 519-1992. / Este trabalho apresenta a proposta de um sistema para geração de energia elétrica baseado na Máquina de Indução Trifásica (MIT) com rotor tipo gaiola de esquilo associada a um conversor de freqüência chaveado no modo PWM (modulação por largura de pulsos na sigla em inglês) senoidal. O lado CC do conversor de frequência é conectado assincronamente à rede monofásica da concessionária através de um inversor monofásico em ponte completa a tiristores, alimentado em corrente, e de um conversor CC-CC abaixador de tensão, utilizado para modular senoidalmente a corrente injetada na rede via inversor. Este sistema permite a operação como co-gerador em localidades alimentadas por linhas monofásicas e com disponibilidade de recursos energéticos. O conversor de freqüência é responsável por manter a freqüência fundamental nos terminais do gerador de indução fixa em 60 Hz. A tensão no capacitor Ccc (Vcc) é controlada através da manutenção do balanço energético no lado CC do conversor PWM, ajustando a amplitude da corrente ativa injetada na rede monofásica em um valor adequado. A estratégia empregada para implementação do controle foi a compensação analógica tipo proporcional-integral (PI) do erro de Vcc. O sistema é ainda capaz de atuar como compensador de potência reativa para as cargas CA, já que o capacitor Ccc representa uma fonte de tensão contínua para o inversor e a ponte trifásica a diodos permite o fluxo bidiredional de energia entre os lados CA e CC do sistema. Os resultados de simulação e experimentais sustentam a viabilidade do sistema para prover tensões trifásicas equilibradas e reguladas, satisfazendo os requisitos da resolução 505/2001 da ANEEL e da norma IEEE Std 519-1992 do IEEE/ANSI.
|
Page generated in 0.0286 seconds