• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 8
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 43
  • 16
  • 15
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Fire and structural performance of non-metallic timber connections

Brandon, Daniel January 2015 (has links)
Recent studies showed the need for timber connections with high fire performance. Connections of members in timber structures commonly comprise steel connectors, such as dowels, screws, nails and toothed plates. However, multiple studies have shown that the presence of exposed metal in timber connections leads to a poor performance under fire conditions. Replacing metallic fasteners with non-metallic fasteners potentially enhances the fire performance of timber connections. Previous studies showed that Glass Fibre Reinforced Polymer (GFRP) dowels can be a viable replacement for steel dowels and that Densified Veneer Wood functions well as a flitch plate material. However, as the resin matrix of GFRP dowels is viscoelastic, connection creep, which is not studied before, can be of concern. Also no research has been carried out on the fire performance of these connections. Therefore, a study of the creep behaviour and the fire performance of non-metallic timber connections comprising GFRP dowels and a Densified Veneer Wood flitch plate was performed, as is discussed in this thesis. Predictive models were proposed to determine the connection slip and load bearing capacity at ambient and elevated temperatures and in a fire. The material properties and heat transfer properties required for these models were determined experimentally and predictions of these models were experimentally validated. Furthermore, an adjustment of the predictive model of connection slip at ambient temperature allowed approximating the creep of the connection. The material properties, required for the creep model, were determined experimentally and predictions of the model were compared to results of longterm connection tests. The study confirmed that timber members jointed with non-metallic connectors have a significantly improved fire performance to timber joints using metallic connections. Models developed and proposed to predict fire performance gave accurate predictions of time to failure. It was concluded that non-metallic connections showed more creep per load per connector, than metallic connections. However, the ratio between initial deflection and creep (relative creep) and the ratio between load level and creep were shown to be similar for metallic and non-metallic connections.
12

Degradation Models for the Collapse Analysis of Composite Aerospace Structures

Orifici, Adrian Cirino, adrian.orifici@student.rmit.edu.au January 2007 (has links)
For the next generation of aircraft, the use of fibre-reinforced polymer composites and the design of
13

高強度GFRPのモードⅢ層間はく離疲労き裂進展におよぼす応力比の影響

松原, 剛, MATSUBARA, Go, 田中, 啓介, TANAKA, Keisuke 05 1900 (has links)
No description available.
14

高強度GFRPのモードⅡ層間はく離疲労き裂進展におよぼす応力比の影響

松原, 剛, MATSUBARA, Go, 尾野, 英夫, ONO, Hideo, 田中, 啓介, TANAKA, Keisuke 04 1900 (has links)
No description available.
15

Nano-reinforced epoxy resin for carbon fibre fabric composites

Liu, Yan January 2016 (has links)
This thesis reports a study of the effects on processing and properties of incorporating nano-scale reinforcements (multiwall carbon nanotubes, MWCNTs) in the matrix of epoxy- carbon fibre (CF) laminate composites to produce multi-scale composites (M-SC). The main aim of this research was to study the effects of MWCNTs on matrix toughening and the through-thickness properties of M-SCs based on a commonly used aerospace grade epoxy resin — triglycidyl-p-aminophenol (TGPAP) cured with diaminodiphenyl sulphone (DDS). In order to improve resin processing, diglycidyl ether of bisphenol F (DGEBF) was added into the TGPAP/DDS system as a reactive diluent. Factorial experimental design (FED) was used to optimize the composition of this tri-component system to obtain high Tg and low resin viscosity, which gave a TGPAP/DGEBF/DDS system with 30.56 wt.% of DGEBF and a chemical stoichiometry of 0.5. Three types of MWCNTs were used; as-received (AR-), base-washed (BW-) and amine functionalized (NH2-). These were shear-mixed with both the bi- and tri-component systems using a 3-roll mill to produce nanocomposite matrices (NCM). The curing behaviour, dispersion state of MWCNTs in the resin and processability of NCMs were studied to decide upon the preparation method for the final M-SC. The fracture toughness (KIC) and the flexural properties of NCM were affected by both MWCNTs and the matrix type; thus KIC increased by up to 8 % in TGPAP/DDS NCM but decreased by 23% in TGPAP/DGEBF/DDS NCM with 0.5 wt.% AR-CNTs. The addition of both non-functionalized and functionalized MWCNTs increased the flexural modulus. The failure mechanism of NCMs was found to be dominated by the size and distribution of CNT aggregates and the behaviour of MWCNTs, both those dispersed in the matrix and in aggregates. The addition of functionalized MWCNTs increased the interfacial bonding between MWCNT and epoxy resin and thus improved the mechanical properties. All the NCM systems were taken forward to manufacture M-SC using a hybrid resin film infusion (RFI)/hot press process. The fibre volume fraction and the void content could be controlled at 43 ± 5 % for M-SC with TGPAP/DDS NCM and 60 ± 6 % for M-SC with TGPAP/DGEBF/DDS NCM. M-SCs were characterised using a range of tests, including flexural, interlaminar shear strength (ILSS), mode-II interlaminar fracture toughness (GIIC), low velocity impact and compression after impact (CAI). The most obvious improvement occurred for the M-SC with tri-component system with 0.5 wt.% CNTs, whereILSS increased by 16 % upon adding NH2-CNTs and GIIC increased significantly on addition of 0.5 wt.% AR-CNTs and NH2-CNTs, by 85% and 184% respectively. However the effect of MWCNTs on other properties was at best marginal. For example, for the M-SC with TGPAP/DDS, the flexural modulus and ILSS only increased by 4.1 % and 2.3 % with 0.5 wt.% AR-CNT.
16

3D state space analysis and free-edge effect of piezoelectric laminated thick plates

Han, Chao January 2014 (has links)
The accurate evaluation of interlaminar stresses is of great significance in the analysis and design of laminated and piezoelectric laminated structures because complex behaviours of these stresses near free edges initiate edge delamination that raises concerns about the structural integrity and reliability. This thesis presented 3D hybrid analyses on the interlaminar stresses to investigate the electromechanical coupling and free edge effects of piezoelectric laminated plates with an emphasis on the realistic distributions of the 3D stress and electric fields near free edges. In this research, the state space equations for simply-supported and free-edge piezoelectric laminates under transverse loads and infinite long free-edge piezoelectric laminates under uniaxial extension were obtained in the framework of 3D piezoelasticity by considering all the independent elastic and piezoelectric constants. The equations satisfy the traction-free and open-circuit boundary conditions at free edges and the continuity conditions across all interfaces. On the basis of the transfer matrix and recursive solution approaches, 3D exact solutions were sought by a novel non-uniform layer refinement technique to evaluate the accuracy of the finite element method (FEM), and realistic gradients of interlaminar stresses and electric fields were captured. The FEM results were in good agreement with those from the present solutions except for the regions near free edges. For simply-supported and free-edge laminates, stress variations with material properties, geometries and stacking sequences were obtained. The interlaminar stress τxz was dominant at corners and τyz also tended to contribute to delamination. In the infinite long free-edge laminates, σz, τyz, Ey and Ez exhibited significant gradients near free edges. Furthermore, the considerable influence of the electromechanical coupling effect on interlaminar stresses revealed that piezoelectric laminates were more susceptible to edge delamination and the application of closed-circuited surface conditions might prevent such edge delamination. The present analytical solution demonstrated an improvement in precision over other 2D analytical and numerical solutions and could serve as a benchmark for the determination of interlaminar stresses and electric fields near the free edges of the piezoelectric laminates.
17

Smyková pevnost vlákny vyztuženého polymerního kompozitu / Shear strength of the fiber-reinforced polymer composite

Jurko, Michal January 2020 (has links)
The diploma thesis deals with the study of Inter-Laminar Shear Strength (ILSS) of polymer composites, based on unsaturated polyester resin with unidirectionally oriented basalt or glass fibers. The basis of the experimental part is the preparation of composite samples with different types of surface treatment of a fibers (a reinforcement) as well as the surface treatment itself. The untreated, the commercially treated fibers and the plasmatreated fibers used as reinforcement in the polymer composites were analysed by a short beam shear test and their ILSS was determined. The effect of various deposition conditions during Plasma-Enhanced Chemical Vapour Deposition (PECVD) on the value of ILSS of the composite with originally unsized glass or basalt fibers was studied. The impact of aging on the interlaminar shear strength of the composites was investigated for commercially treated glass fibers. The Scanning Electron Microscopy (SEM) is also used in the thesis together with the Energy Dispersive Spectroscopy (EDS). Based on all the results a proposal was made to correct and improve the deposition conditions and thus improve the interphase to achieve the required shear properties of polymer composites.
18

Ply cracking and stiffness degradation in cross-ply laminates under biaxial extension, bending and thermal loading.

Zhang, D., Ye, J., Lam, Dennis January 2006 (has links)
Transverse ply cracking often leads to the loss of stiffness and reduction in thermal expansion coefficients. This paper presents the thermoelastic degradation of general cross-ply laminates, containing transverse ply cracks, subjected to biaxial extension, bending and thermal loading. The stress and displacement fields are calculated by using the state space equation method [Zhang D, Ye JQ, Sheng HY. Free-edge and ply cracking effect in cross-ply laminated composites under uniform extension and thermal loading. Compos Struct [in press].]. By this approach, a laminated plate may be composed of an arbitrary number of orthotropic layers, each of which may have different material properties and thickness. The method takes into account all independent material constants and guarantees continuous fields of all interlaminar stresses across interfaces between material layers. After introducing the concept of the effective thermoelastic properties of a laminate, the degradations of axial elastic moduli, Poisson¿s ratios, thermal expansion coefficients and flexural moduli are predicted and compared with numerical results from other methods or available test results. It is found that the theory provides good predictions of the stiffness degradation in both symmetric and antisymmetric cross-ply laminates. The predictions of stiffness reduction in nonsymmetric cross-ply laminates can be used as benchmark test for other methods.
19

Ply cracking and stiffness degradation in cross-ply laminates under biaxial extension, bending and thermal loading

Lam, Dennis, Zhang, D., Ye, J. January 2005 (has links)
Transverse ply cracking often leads to the loss of stiffness and reduction in thermal expansion coefficients. This paper presents the thermoelastic degradation of general cross-ply laminates, containing transverse ply cracks, subjected to biaxial extension, bending and thermal loading. The stress and displacement fields are calculated by using the state space equation method [Zhang D, Ye JQ, Sheng HY. Free-edge and ply cracking effect in cross-ply laminated composites under uniform extension and thermal loading. Compos Struct [in press].]. By this approach, a laminated plate may be composed of an arbitrary number of orthotropic layers, each of which may have different material properties and thickness. The method takes into account all independent material constants and guarantees continuous fields of all interlaminar stresses across interfaces between material layers. After introducing the concept of the effective thermoelastic properties of a laminate, the degradations of axial elastic moduli, Poisson's ratios, thermal expansion coefficients and flexural moduli are predicted and compared with numerical results from other methods or available test results. It is found that the theory provides good predictions of the stiffness degradation in both symmetric and antisymmetric cross-ply laminates. The predictions of stiffness reduction in nonsymmetric cross-ply laminates can be used as benchmark test for other methods.
20

Non-destructive Evaluation Measurements and Fracture Effects in Carbon/Epoxy Laminates Containing Porosity

Hakim, Issa A. 28 August 2017 (has links)
No description available.

Page generated in 0.0628 seconds