51 |
Synthesis and characterization of nano-structured CoSb3 thermoelectric materialKhan, Abdullah January 2009 (has links)
In this project, nano powder of CoSb3 thermoelectric material was synthesized using chemical alloying novel co-precipitation method. This method involved co-precipitation of TE precursor compounds in controlled pH aqueous solutions followed by thermo-chemical treatments including calcination and reduction to produce nano-particulates of CoSb3. The nano powder was consolidated using rapid solid state spark plasma sintering (SPS) and the processing time was of the order of few minutes. On a result very high densities were achieved and grain growth was almost negligible. Various batches of the CoSb3 nano powder were produced to achieve high purity, minimum particle size and compensate Sb evaporation during thermo-chemical reduction. For de-agglomeration, powder was grinded before and after calcination. Samples were characterized at each stage during synthesis using XRD and SEM (with EDX). Thermal gravimetric analysis (TGA) was done before thermochemical treatments to observe weight losses with heating the powder at high temperatures and other physiochemical changes. Thermal diffusivity of the samples was measured at room temperature using Laser Flash Apparatus (LFA) and heat capacity was measured using Differential Scanning Calorimetry (DSC). Thermal conductivities are calculated using these thermal diffusivities, heat capacities and densities of the sintered pellets. Average grain size is measure using image size J software. It was observed that powder purity and size is affected by batch size, reduction conditions like holding temperature and time. During sintering with SPS; heating and cooling rates, sintering temperature, holding pressure and time were the main variables. Grain size and morphology was analyzed using SEM. It was observed that larger the grain size higher will be the thermal diffusivity, which leads to increase in thermal conductivity. Hence, grain size has affected on thermal conductivity and also on TE performance. / QC 20100708
|
52 |
Joining of Shape-Memory NiTi Torque Tubes to Structural MaterialsFox, Gordon R. 19 June 2012 (has links)
No description available.
|
53 |
Defect Structures in Ordered Intermetallics; Grain Boundaries and Surfaces in FeAl, NiAl, CoAl and TiAlMutasa, Batsirai M. 16 May 1997 (has links)
Ordered intermetallics based on transition metal aluminides have been proposed as structural materials for advanced aerospace applications. The development of these materials, which have the advantages of low density and high operating temperatures, have been focused on the aluminides of titanium, nickel and iron. Though these materials exhibit attractive properties at elevated temperatures, their utilization is limited due to their propensity for low temperature fracture and susceptibility to decreased ductility due to environmental effects. A major embrittlement mechanism at ambient temperatures in these aluminides has been by the loss of cohesive strength at the interfaces (intergranular failure). This study focuses on this mechanism of failure, by undertaking a systematic study of the energies and structures of specific grain boundaries in some of these compounds.
The relaxed atomistic grain boundary structures in B2 aluminides, FeAl, NiAl and CoAl and <I>L</I>1₀ γ-TiAl were investigated using molecular statics and embedded atom potentials in order to explore general trends for a series of B2 compounds as well as TiAl. The potentials used correctly predict the proper mechanism of compositional disorder of these compounds. Using these potentials, point defects, free surface energies and various grain boundary structures of similar energies in three B2 compounds, FeAl, NiAl and CoAl were studied. These B2 alloys exhibited increasing anti-phase boundary energies respectively. The misorientations chosen for detailed study correspond to the Σ5(310) and Σ5(210) boundaries. These boundaries were investigated with consideration given to possible variations in the local chemical composition. The effects of both boundary stoichiometry and bulk stoichiometry on grain boundary energetics were also considered. Defect energies were calculated for boundaries contained in both stoichiometric and off-stoichiometric bulk. The surface energies for these aluminides were also calculated so that trends concerning the cohesive energy of the boundaries could be studied. The implications of stoichiometry, the multiplicity of the boundary structures and possible transformations between them for grain boundary brittleness are also discussed. / Ph. D.
|
54 |
Strengthening of Al-based composites by microstructural modificationsShahid, Hafiz Rub Nawaz 19 January 2019 (has links)
Die Verstärkung von Aluminium-Matrix-Verbundwerkstoffen kann durch die Integration von Hartphasenpartikeln in die Matrix erreicht werden. Die Festigkeitssteigerung der Komposite ist abhängig davon, wie die Verstärkungsphase die einwirkenden Kräfte aufnehmen kann und zudem von den Auswirkungen der Verstärkungsphase auf das Werkstoffgefüge. Die Verfestigung wird zurückgeführt auf Versetzungsmultiplikation, Matrixpartitionierung und Orowan-Verstärkungseffekte. Die Festigkeit steigt durch Erhöhung des Volumenanteils der Verstärkungsphase sowie durch die Reduktion der Größe der Verstärkungsphase. Darüber hinaus kann die Festigkeitssteigerung von Verbundwerkstoffen durch eine Gefügemodifikation verbunden mit einer Reaktion zwischen Matrix und Verstärkungsphase erreicht werden. Die Festigkeitssteigerung kann auch durch die Schaffung harmonischer Strukturen, d.h. durch ein bimodales Gefüge, erfolgen. Dieses wird erzeugt durch kontrolliertes Mahlen der partikelförmigen Precursor-Phase, die dann aus grobkörnigen Kerngebieten bestehen, eingebettet in eine kontinuierliche feinkörnige Matrix.
In dieser Arbeit werden Verbundwerkstoffe auf Aluminiumbasis durch Hochenergiemahlen und anschließender Konsolidierung durch Heißpressen hergestellt. Ausgehend von der in-situ Herstellung intermetallischer Verstärkungsphasen in Al-Mg-Verbundwerkstoffen werden außerdem in-situ Gefügemodifikationen in Al-Fe3Al-Verbundwerkstoffen betrachtet. Al-Fe3Al-Verbundwerkstoffe mit harmonischer Struktur konnten dabei erfolgreich hergestellt werden. Anschließend wurde der Einfluss der mikrostrukturellen Veränderungen auf die mechanischen Eigenschaften analysiert.
Al-Mg-Metallmatrix-Verbundwerkstoffe werden aus den Pulvergemischen von elementarem Aluminium und Magnesium durch druckunterstütztes reaktives Sintern hergestellt. Das Ziel ist es, den Einfluss des anfänglichen Volumenanteils von Magnesium auf die mikrostrukturellen Veränderungen und die Entstehung der in-situ intermetallischen Verstärkungsphase zu analysieren. Zudem wird der Einfluss der Reaktion zwischen Aluminium und Magnesium und die damit verbundene Bildung der intermetallischen Phasen β-Al3Mg2 und γ-Al12Mg17 auf die mechanischen Eigenschaften der Verbundwerkstoffe untersucht. Die Bildung der intermetallischen Phasen verbraucht zunehmend Aluminium und Magnesium und bewirkt eine Verfestigung der Verbundwerkstoffe: Die Streckgrenze und die Druckfestigkeit steigen mit zunehmendem Gehalt an intermetallischer Verstärkungsphase auf Kosten der plastischen Verformung.
In der nächsten Phase wird im Al-Fe3Al-System die Wirksamkeit der Reaktion zwischen Matrix und Verstärkungsphase als festigkeitssteigernde Maßnahme zur weiteren Verbesserung der mechanischen Eigenschaften untersucht. Dafür werden transformierte und nicht-transformierte Verbundwerkstoffe durch Heißpressen bei unterschiedlichen Temperaturen hergestellt. Phasenanalyse und mikrostrukturelle Charakterisierung der transformierten Verbundwerkstoffe zeigten die Bildung der intermetallischen Phasen Al5Fe2 und Al13Fe4, die als Verstärkungsphase mantelförmig um die die Fe3Al-Phase angeordnet sind. Die Al-Matrix wird dabei mit steigendem Anteil an Verstärkungsphase zunehmend verbraucht. Um die durch die Al-Fe3Al-Reaktion induzierte Phasenfolge zu analysieren, wurden Verbundwerkstoffe, bestehend aus Al-Matrix und einem einzigen mm-großen Fe3Al-Partikel durch Heißpressen bei 823, 873 und 903 K synthetisiert. Die Gefüge- und Phasenanalyse deuten darauf hin, dass die In-situ-Phasenumwandlung durch atomare Diffusion von Aluminium in Fe3Al erfolgt und die Bildung von in-situ intermetallischen Phasen (Al5Fe2 und Al13Fe4) ausschließlich innerhalb der ursprünglichen Fe3Al-Partikel stattfindet. Die Phasenumwandlung beim Heißpressen führt zu einer signifikanten Festigkeitssteigerung: Die Streckgrenze und die Druckfestigkeit erhöhen sich von 70-360 MPa und 200-500 MPa für die nicht umgewandelten Verbundwerkstoffe auf 400-1800 MPa und 550-1800 MPa für die umgewandelten Materialien. Damit verbunden ist jedoch auch eine verringerte plastische Verformbarkeit in den umgewandelten Kompositen. Die Streckgrenze von transformierten und nicht transformierten Verbundwerkstoffen folgt dem Iso-Stress-Modell, wenn die charakteristischen strukturellen Merkmale (d.h. Verstärkungsphasen und Matrix) berücksichtigt werden.
Schließlich wird das Konzept der harmonischen Strukturen für Metallmatrix-Verbundwerkstoffe erweitert, indem die Wirksamkeit solcher bimodaler Gefüge als Verstärkungsmethode für Verbundwerkstoffe aus einer reinen Al-Matrix verstärkt mit Fe3Al-Partikeln betrachtet wird. Ziel der Studie ist es, die Gefügeveränderungen zu untersuchen, die durch das Hochenergiemahlen der Al-Fe3Al-Verbundpulvermischungen induziert werden. Weiterhin soll der Einfluss des so veränderten Gefüges auf das mechanische Verhalten der durch Heißpressen synthetisierten Verbundproben charakterisiert werden.
Die beabsichtigte Kornfeinung beschränkt sich auf die Oberfläche der Partikel, wo die Fe3Al-Phase während der Kugelmahlung der Al-Fe3Al-Verbundpulvermischungen nach und nach fragmentiert wird. In den bei der anschließenden Pulverkonsolidierung erzeugten harmonisierten Kompositen wird die feinkörnige Oberfläche zur kontinuierlichen feinkörnigen Matrix, die Makroregionen mit grobkörnigen Verstärkungspartikeln umschließt. Die Erzeugung der bimodalen Gefüge hat einen signifikanten Einfluss auf die Festigkeit der harmonischen Verbundwerkstoffe, die die des konventionellen Materials um den Faktor 2 übertrifft, ohne die plastische Verformbarkeit zu beeinträchtigen. Zudem zeigt die Modellierung der mechanischen Eigenschaften, dass die Festigkeit der harmonischen Verbundwerkstoffe genau beschrieben werden kann, indem sowohl der Volumenanteil der Verstärkungsphase als auch die charakteristischen Gefügemerkmale der harmonischen Struktur berücksichtigt werden.
Die Ergebnisse der vorliegenden Arbeit zeigen, dass die Pulvermetallurgie (d.h. Hochenergiemahlen mit anschließendem Heißpressen) erfolgreich eingesetzt werden kann, um hochfeste Verbundwerkstoffe auf Aluminiumbasis mit intermetallischer Verstärkungsphase herzustellen. Die Ergebnisse zeigen, dass durch Phasenumwandlung und durch die Anordnung von Verstärkungsphasen hervorgerufene Gefügeveränderungen die Festigkeit der Verbundwerkstoffe signifikant erhöht werden kann. Die Festigkeit und Verformbarkeit der so erzeugten Komposite hängt vom Volumenanteil und der Anordnung der Verstärkungsphase sowie der Grenzflächenreaktion zwischen den Ausgangskomponenten ab. / The strengthening of aluminum matrix composites can be achieved by incorporating hard phase particles in the matrix. The strengthening of the composites depends on the ability of the reinforcement to bear the load and on the microstructural changes induced by the reinforcement addition. The microstructural strengthening is mainly associated with dislocation multiplication, matrix partitioning and Orowan strengthening effects. The strength increases by increasing the reinforcement volume fraction as well as by reducing the size of the reinforcing particles. Additionally, strengthening of composites can be achieved by microstructural modifications through the proper reaction between matrix and reinforcement. Strengthening can also be efficiently attained by the creation of harmonic structures: bimodal microstructures generated by controlled milling of the particulate precursors, which consist of coarse-grained cores embedded in a continuous fine-grained matrix.
In this thesis, aluminum based composites are synthesized using ball milling followed by consolidation through hot pressing. Starting from the in-situ creation of intermetallic reinforcements in Al-Mg composites, the research proceeds towards the in-situ microstructural modification in Al-Fe3Al composites. Finally, Al-Fe3Al composites with harmonic structure are successfully produced. The consolidated composites are characterized to analyze the effect of the microstructural changes on the mechanical properties.
Lightweight Al-Mg metal matrix composites are synthesized from elemental powder mixtures of aluminum and magnesium using pressure-assisted reactive sintering. The aim is to analyze the effect of the initial volume percent of magnesium on the microstructural modifications and development of the in-situ intermetallic reinforcements. The effect of the reaction between aluminum and magnesium on the mechanical properties of the composites due to the formation of β-Al3Mg2 and γ-Al12Mg17 intermetallics is also investigated. The formation of the intermetallic compounds progressively consumes aluminum and magnesium and induces strengthening of the composites: the yield and compressive strengths increase with increasing the content of intermetallic reinforcement at the expense of the plastic deformation.
In the next stage, the effectiveness of the reaction between matrix and reinforcement as a strengthening method for further improving the mechanical performance composites is investigated for the Al-Fe3Al system. To achieve this aim, transformed and non-transformed composites are produced by hot pressing at different temperatures. Phase analysis and microstructural characterization of the transformed composites reveal the formation of a double-shell-reinforcement with Al5Fe2 and Al13Fe4 intermetallics surrounding the Fe3Al phase, while the Al matrix is progressively consumed with increasing the reinforcement content. In order to analyze the phase sequence induced by the Al-Fe3Al reaction, composites consisting of Al matrix and a single mm-sized Fe3Al particle were synthesized through hot pressing at 823, 873 and 903 K. The microstructural investigations and phase identifications suggest that in-situ phase transformation occurs through atomic diffusion of aluminum in Fe3Al and the formation of in-situ intermetallics (Al5Fe2 and Al13Fe4) takes place exclusively within the original Fe3Al particles. The phase transformation during hot pressing induces significant strengthening: the ranges of yield and compressive strengths increase from 70-360 MPa and 200-500 MPa for the non-transformed composites to 400-1800 MPa and 550-1800 MPa for the transformed materials. This occurs at the expense of the plastic deformation, which is generally reduced in the transformed composites. The yield strength of both transformed and non-transformed composites follows the iso-stress model when the characteristic structural features (i.e. strengthening phases and matrix) are taken into account.
At the end, the concept of harmonic structures is extended to metal matrix composites by analyzing the effectiveness of such bimodal microstructures as a strengthening method for composites consisting of a pure Al matrix reinforced with Fe3Al particles. The purpose of the study is to examine the microstructural variations induced by ball milling of the Al-Fe3Al composite powder mixtures and how such variations influence the resulting microstructure and mechanical response of the bulk composite specimens synthesized by hot-pressing.
Preferential microstructural refinement limited to the surface of the particles, where the Fe3Al phase is progressively fragmented, occurs during ball milling of the Al-Fe3Al composite powder mixtures. The refined surface becomes the continuous fine-grained matrix that encloses macro-regions with coarser reinforcing particles in the harmonic composites synthesized during subsequent powder consolidation. The generation of the bimodal microstructure has a significant influence on the strength of the harmonic composites, which exceeds that of the conventional material by a factor of 2 while retaining considerable plastic deformation. Finally, modeling of the mechanical properties indicates that the strength of the harmonic composites can be accurately described by taking into account both the volume fraction of reinforcement and the characteristic microstructural features describing the harmonic structure.
The results of the current research work demonstrate that powder metallurgy (i.e. ball milling followed by hot consolidation) can be successfully used to produce high strength aluminum based composites reinforced by intermetallics. The findings indicate that phase transformation and reinforcement arrangement based microstructural modifications can significantly enhance the strength of the composites. The strength and deformability of the composites depends on the volume fraction and arrangement of the reinforcement along with the interfacial reaction between the initial components.
|
55 |
Dépôt chimique en phase vapeur d'Al, Cu et Fe en vue d'élaboration de films composés de phases intermétalliques / Chemical vapor deposition of Al, Cu and Fe in view of the processing of intermetallic phases containing filmsAloui, Lyacine 02 October 2012 (has links)
Des films et revêtements composés de phases et composés intermétalliques présentent des propriétés et des combinaisons de propriétés attractives qui ne sont que très partiellement explorées aujourd’hui. Ils sont porteurs de solutions potentielles pour conférer à des matériaux avancés des multifonctionnalités nécessaires dans pratiquement toutes les industries manufacturières et deviennent ainsi source de rupture et d’innovation. Cette situation prévaut pour le système Al-Cu-Fe, au sein duquel même les binaires à base d’Al présentent des propriétés remarquables. Si des techniques de dépôt physique en phase vapeur sont le plus souvent utilisées pour l’élaboration de tels films et revêtements métalliques, l’utilisation de procédés de dépôt chimique en phase vapeur à partir de précurseurs métalorganiques (MOCVD) permettrait à terme le traitement et la fonctionnalisation de surfaces de géométrie complexe. Le présent travail s’inscrit dans cette logique. Il vise la mise au point de procédés MOCVD de films d’Al, de Cu et de Fe. Ces procédés doivent être compatibles afin de constituer la base pour l’élaboration de protocoles complexes permettant le codépôt ou le dépôt séquentiel de ces éléments. La MOCVD d’Al à partir de dimethylethyl amine alane (DMEAA) a été adaptée pour satisfaire les contraintes de codépôt, pour valider le dispositif expérimental utilisé pour le dépôt des films unaires et binaires, pour valider certains aspects mécanistiques du dépôt et pour illustrer la capacité de la technique de couvrir de manière conforme des surfaces de géométrie complexe. Le protocole mise au point permet d’opérer à une pression de 10 Torr, dans une fenêtre de températures entre 160 °C et 240 °C. La modélisation du procédé permet son optimisation dans ces conditions, conduisant à des films d’épaisseur uniforme sur une surface de diamètre 58 mm. La microstructure désordonnée des films est améliorée par un prétraitement plasma des substrats d’acier 304L in situ avant dépôt.Le besoin d’utiliser des précurseurs de Cu et de Fe exemptes d’oxygène (en vue d’un codépôt avec Al) a conduit à tester pour ces deux éléments la famille originale des composés moléculaires à base de ligands amidinates. Il est montré que des films purs de Cu sont obtenus entre 200 °C et 350 °C à partir de [Cu(i-Pr-Me-AMD)]2 dans une phase gazeuse riche en hydrogène, la limite entre les régimes cinétique et diffusionnel étant à 240 °C. Le criblage de précurseurs analogues pour Fe a révélé que, dans les mêmes conditions, le composé [Fe(tBu-MeAMD)2] conduit à des films contenant Fe, Fe4N ainsi qu’à des carbures Fe3C et Fe4C.Des bicouches de Cu et Al ont été déposées à partir des protocoles mis au point. Leur recuit post dépôt a été suivi in situ par diffraction de rayons X et par mesure de la résistance électrique. Il a permis de stabiliser des phases θ-Al2Cu, η-AlCu et, pour la première fois reportée dans la littérature, de la phase approximante γ-Al4Cu9. Il a été démontré que la technique MOCVD associée avec des recuits post dépôt est une méthode appropriée pour obtenir des films composés d’alliages intermétalliques. Des dépôts conformes de tels films peuvent ainsi être envisagés pour des nombreuses applications. / Films and coatings intermetallic phases and intermetallic compounds present proprieties and combination of proprieties which are just partially explored today. They carry potential solutions to confer multifunctionality for advanced materials needed by industries and become a source of disruption and innovation. This situation prevails for the Al-Cu-Fe, in which even the binary Al-based exhibit remarkable properties. While techniques of physical vapor deposition are most often used for the development of such films and metallic coatings, the use of processes of chemical vapor deposition from metallorganic precursors (MOCVD) lead to the treatment and functionalization of surfaces with complex geometry. The present work joins in this logic.It aims at the development of MOCVD processes of Al, Cu and Fe films. These processes must be compatible to constitute the base for the elaboration of complex protocols allowing the codeposition or the sequential deposition of these elements. The MOCVD of Al from dimethylethyl amine alane (DMEAA) was adapted to satisfy the constraints of codeposition to validate the experimental device. Used for the deposition of unary and binary films, to validate certain aspects mechanistic of the deposition and to illustrate the capacity of the technique to cover in a shape way surfaces of complex geometry. The protocol development allows to operate at pressure of 10 Torr, in a window of temperatures between 160 °C and 240 °C. The modeling of the process allows its optimization in these conditions, leading to films with uniform thickness. The disorderly microstructure of these films is improved by a plasma pretreatment of the substrate of 304L steel in situ before deposition. The need to use precursors of Cu and Fe-free oxygen (for a co-deposition with Al) has led to testing for these two elements the original family of molecular compounds based ligands AMIDINATES. It is shown that pure Cu films are obtained between 200 ° C and 350 ° C from [Cu (i-Pr-Me-AMD)]2 in a gaseous phase rich in hydrogen, the boundary between the kinetic schemes and diffusion regyme being at 240 ° C. Screening similar to Fe precursors revealed that, under the same conditions, the compound [Fe (tBu-MeAMD)2] leads to films containing Fe, as well as Fe4N carbides Fe3C and Fe4C. Bilayers of Cu and Al were deposited from the protocols developed. Their post deposition annealing was followed by in situ X-ray diffraction and by measuring the electrical resistance. It has stabilized θ-Al2Cu, η-AlCu phases and, for the first time reported in the literature, the approximant phase γ-Al4Cu9. It was demonstrated that the MOCVD technique associated with post-deposition annealing is a suitable method to obtain films composed of intermetallic alloys. Deposits conform such films can thus be considered for many applications.
|
56 |
Determinação dos coeficientes de expansão térmica das fases Ta5Si3 e Cr5Si3 e a investigação da formação da fase (Hf,Ti)5Si3 por difratometria de raios X de alta resolução / Determination of the thermal expansion coefficients for the Ta5Si3 and Cr5Si3 phases and the investigation of (Hf, Ti)5Si3 phase formation by high resolution X-ray diffractionRibeiro, Lívia de Souza 16 October 2009 (has links)
Os silicetos de metais de transição têm sido investigados para possíveis aplicações em altas temperaturas. A expansão térmica é uma das principais propriedades a serem consideradas nas aplicações. Este trabalho teve como objetivos a determinação dos coeficientes de expansão térmica das fases αTa5Si3 e Cr5Si3 e a investigação da formação da fase (Hf, Ti)5Si3. As ligas de Ta-Si e Cr-Si foram produzidas por fusão a arco. As ligas de Ta-Si foram tratadas termicamente a 1900 °C por 3 h em argônio, enquanto que as ligas de Cr-Si foram tratadas a 1200 °C por 24 h em argônio. As ligas foram caracterizadas por difratometria de raios X e microscopia eletrônica de varredura. As medidas de difratometria de raios X de alta resolução com fonte de luz síncrotron foram realizadas nas amostras contendo as fases de interesse, αTa5Si3 e Cr5Si3 num intervalo de temperatura entre ambiente e 800 °C. A fase αTa5Si3, de estrutura tetragonal (T2), apresentou expansão térmica de αa = 5,9(3).10-6 K-1 e αc = 9,2(4).10-6 K-1 na liga Ta62,5Si37,5 e αa = 6,2(3).10-6 K-1 e αc = 9,5(4).10-6 K-1 na liga Ta62Si38, resultando em uma anisotropia de αc/αa de 1,5 para ambas as amostras. A fase Cr5Si3 de estrutura hexagonal (D88) apresentou expansão térmica de αa = 17,1(3).10-6 K-1 e αc = 11,1(4).10-6 K-1 na liga Cr62,5Si37,5 e αa = 17,2(3).10-6 K-1 e αc = 10,7(4).10-6 K-1 na liga Ta62Si38, com anisotropia αc/αa de 1,5 e 1,6, respectivamente. Na segunda parte deste trabalho, as ligas de composições Hf(62,5-x)TixSi37,5 (0 ≤ x ≤ 62,5) com diferentes proporções de Hf e Ti foram preparadas por fusão a arco e tratadas termicamente a 1200 °C por 24 h em atmosfera de argônio. A formação da fase (Hf,Ti)5Si3 foi observada em todas as amostras preparadas. As amostras de composições Hf38,9Ti23,6Si37,5 e Hf22,5Ti40Si37,5 a Ti62,5Si37,5, apresentaram-se monofásicas. A variação nos parâmetros de rede a e c da fase hexagonal (Hf,Ti)5Si3 contendo diferentes teores de Hf e Ti mostrou que a fase constitui uma solução sólida em toda a extensão entre Hf5Si3 e Ti5Si3, com substituição parcial dos átomos de Hf por Ti. / The transition metal silicides have been investigated aiming high temperature applications. The thermal expansion is one of main properties for applications. The aim of this work was the evaluation of the thermal expansion coefficients for αTa5Si3 and Cr5Si3 phases and the investigation of (Hf, Ti)5Si3 phase formation. The Ta-Si and Cr-Si alloys were prepared by arc-melting. The Ta-Si alloys were heat-treated at 1900 °C for 3 h in argon atmosphere. The Cr-Si alloys were treated at 1200 °C for 24 h in argon. The alloys were characterized by X-ray diffractometry and scanning electron microscopy. The αTa5Si3 and Cr5Si3 phases were analyzed in high temperatures up to 800 °C using high-resolution X-ray diffraction with synchrotron radiation source. The thermal expansion coefficients for the αTa5Si3 tetragonal phase (T2) was found to be 5.9(3).10-6 K-1 and αc = 9.2(4).10-6 K-1 in Ta62.5Si37.5 composition alloy and αa = 6.2(3).10-6 K-1 and αc = 9.5(4).10-6 K-1 in Ta62Si38 composition alloy. The anisotropy αc/αa was determined to be 1.5 for both samples. The thermal expansion coefficients for Cr5Si3 hexagonal phase was found to be αa = 17.1(3).10-6 K-1 and αc = 11.1(4).10-6 K-1 for Cr62.5Si37.5 composition alloy and αa = 17.2(3).10-6 K-1 and αc = 10.7(4).10-6 K-1 for Ta62Si38 composition alloy. The values of the anisotropy αc/αa were respectively, 1.5 and 1.6. In the second part of this work, the alloys of Hf(62.5-x)TixSi37.5 (0 ≤ x ≤ 62.5) compositions with different proportion of Hf and Ti were prepared by arc-melting and heat-treated at 1200 °C for 24 h in argon atmosphere. The formation of (Hf,Ti)5Si3 phase was observed for all prepared alloys. The alloys of Hf38.9Ti23.6Si37.5 and Hf22.5Ti40Si37.5 to Ti62.5Si37.5 compositions were found to be single-phase. The variation in the lattice parameters a and c for the hexagonal (Hf,Ti)5Si3 phase with different proportion of Hf and Ti shown the formation of solid solution in all range between Hf5Si3 and Ti5Si3 with partial substitution of Hf by Ti.
|
57 |
Design and Characterisation of new Anode Materials for Lithium-Ion BatteriesFransson, Linda January 2002 (has links)
<p>Reliable ways of storing energy are crucial to support our modern way of life; lithium-ion batteries provide an attractive solution. The constant demand for higher energy density, thinner, lighter and even more mechanically flexible batteries has motivated research into new battery materials. Some of these will be explored in this thesis.</p><p>The main focus is placed on the development of new anode materials for lithium-ion batteries and the assessment of their electrochemical and structural characteristics. The materials investigated are: natural Swedish graphite, SnB<sub>2</sub>O<sub>4</sub> glass and intermetallics such as: Cu<sub>6</sub>Sn<sub>5</sub>, InSb, Cu<sub>2</sub>Sb, MnSb and Mn<sub>2</sub>Sb. Their performances are investigated by a combination of electrochemical, <i>in si</i>tu X-ray diffraction and Mössbauer spectroscopy techniques, with an emphasis on the structural transformations that occur during lithiation.</p><p>The intermetallic materials exhibit a lithium insertion/metal extrusion mechanism. The reversibility of these reactions is facilitated by the strong structural relationships between the parent compounds and their lithiated counterparts. Lithiation of a majority of the intermetallics in this work proceeds via an intermediate ternary phase. The intermetallic electrodes provide high volumetric capacities and operate at slightly higher voltages vs. Li/Li<sup>+</sup> than graphite. This latter feature forms the basis for a safer system.</p><p>Jet-milling of natural Swedish graphite results in decreased particle and crystallite size, leading to improved performance; the capacity is close to the theoretical capacity of graphite. Jet-milled graphite also shows an enhanced ability to withstand high charging rates.</p>
|
58 |
Design and Characterisation of new Anode Materials for Lithium-Ion BatteriesFransson, Linda January 2002 (has links)
Reliable ways of storing energy are crucial to support our modern way of life; lithium-ion batteries provide an attractive solution. The constant demand for higher energy density, thinner, lighter and even more mechanically flexible batteries has motivated research into new battery materials. Some of these will be explored in this thesis. The main focus is placed on the development of new anode materials for lithium-ion batteries and the assessment of their electrochemical and structural characteristics. The materials investigated are: natural Swedish graphite, SnB2O4 glass and intermetallics such as: Cu6Sn5, InSb, Cu2Sb, MnSb and Mn2Sb. Their performances are investigated by a combination of electrochemical, in situ X-ray diffraction and Mössbauer spectroscopy techniques, with an emphasis on the structural transformations that occur during lithiation. The intermetallic materials exhibit a lithium insertion/metal extrusion mechanism. The reversibility of these reactions is facilitated by the strong structural relationships between the parent compounds and their lithiated counterparts. Lithiation of a majority of the intermetallics in this work proceeds via an intermediate ternary phase. The intermetallic electrodes provide high volumetric capacities and operate at slightly higher voltages vs. Li/Li+ than graphite. This latter feature forms the basis for a safer system. Jet-milling of natural Swedish graphite results in decreased particle and crystallite size, leading to improved performance; the capacity is close to the theoretical capacity of graphite. Jet-milled graphite also shows an enhanced ability to withstand high charging rates.
|
59 |
Existenzbereiche und physikalische Eigenschaften metallreicher Perowskite (SE3X)M (SE = Seltenerd-Metall; X = N, O; M = Al, Ga, In, Sn) / Mit Ergänzungen zu den ternären Systemen EA-In-N (EA = Ca, Sr, Ba)Kirchner, Martin 26 March 2006 (has links) (PDF)
Die Existenz metallreicher Perowskite der Zusammensetzung (SE3X)M (X = O, N; SE = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Er, Ho, Tm, Lu; M = Al, Ga, In, Sn) wurde untersucht. Die Charakterisierung der Proben erfolgte mit Röntgenpulverdiffraktometrie und Elementaranalysen (O und N). Oxide (SE3O)Al mit SE = La, Ce, Pr, Nd und Sm und (SE3O)In mit SE = Ce, Pr und Nd wurden erhalten. Die Reihe der Verbindungen (SE3N)Al (SE = La, Ce, Pr, Nd, Sm) wurde um die Seltenerd-Metalle SE = Gd, Tb, Dy, Ho, Er und Tm erweitert. Die metallreichen Perowskite (SE3N)Sn (SE = La, Ce, Pr, Sm) und (SE3N)Ga (SE = Ce, Pr, Sm, Gd, Tb) wurden erstmals beschrieben. Die thermische Stabilität (DSC) der Phasen (SE3X)M ist für die Nitride allgemein am höchsten. Nitride von Al und Ga zersetzen zwischen 1000 °C und 1200 °C, Stannide bleiben bis 1250 °C thermisch stabil. Messungen der magnetischen Suszeptibilität und der LIII-Absorbtionskanten sind in Einklang mit einer Elektronenkonfiguration SE3+. Die gemessenen elektrischen Widerstände sind charakteristisch für schlechte metallische Leiter. Verschiedene Gehaltschnitte SE3Al-(SE3X)Al und SE3In-(SE3X)In wurden mit Röntgenpulverdiffraktometrie und DTA untersucht. Die Oxide und Nitride (SE3X1-y)M (SE = La, Ce; X = N, O) weisen nur geringe Phasenbreiten auf. Die Carbide (Ce3C1-y)In zeigen hingegen signifikante Phasenbreiten. In den Systemen EA-In-N wurden röntgenografisch phasenreine Pulver von (Ca4N)[In]2 und (EA19N7)[In4]2 (EA = Ca, Sr) erhalten. Durch Elementaranalysen auf H, C, N, O, EA und In und Neutronenbeugung am Pulver können alternative Zusammensetzungen mit einer ausgeglichenen Ladungsbilanz im Sinne des Zintl-Konzepts für diese Phasen ausgeschlossen werden. Im System La-Al wurde die neue Phase La16Al13 beobachtet und an Einkristallen sowie an Pulvern charakterisiert. Das in der Literatur im Cu3Au-Strukturtyp beschrieben kubische Polymorph von Ce3Al wurde auf einen ternären metallreichen Perowskit (Ce3X)Al zurückgeführt.
|
60 |
Molecular Dynamics Study Of Random And Ordered Metals And Metal AlloysKart, Hasan Huseyin 01 September 2004 (has links) (PDF)
The solid, liquid, and solidification properties of Pd, Ag pure metals and especially PdxAg1-x alloys are studied by using the molecular dynamics simulation. The effects of temperature and concentration on the physical properties of Pdx$Ag1-x are analyzed. Sutton-Chen (SC) and Quantum Sutton-Chen (Q-SC) many-body potentials are used as interatomic interactions which enable one to investigate the thermodynamic, static, and dynamical properties of transition metals. The simulation results such as cohesive energy, density, elastic constants, bulk modulus, pair distribution functions, melting points and phonon dispersion curves obtained for Pd, Ag and PdxAg1-x are in good agreement with the available experimental data at various temperatures. The predicted melting points of Pd, Ag and their binary alloys by using Q-SC potential parameters are closer to experimental values than the ones predicted from SC potential parameters.
The liquid properties such as diffusion constants and viscosities computed from Q-SC potentials are also in good agreement with the available experimental data and theoretical calculations. Diffusion coefficients and viscosity results calculated from simulation obey the Arrhenius equation well. The coefficients of the Arrhenius equation are given in order to calculate the self-diffusion coefficient and shear viscosity of Pd-Ag alloys at the desired temperature and concentration.
Using different cooling rates, we investigate glass formation tendency and crystallization of Pd-Ag metal alloys, by analyzing pair distribution function, enthalpy, volume, and diffusion coefficient. Pd-Ag alloys show the glass structure at fast cooling rates while it crystallizes at slow cooling rates. Glass and crystallization temperatures are also obtained from the Wendt-Abraham parameter. The split of the second peak in the pair distribution function is associated with the glass transition. Glass forming ability increases with increasing concentration of Ag in Pd-Ag alloys.
Thermal and mechanical properties of Cu, Au metals and their ordered intermetallic alloys Cu3 Au(L12), CuAu(L10), and CuAu3(L12) are also studied to investigate the effects of temperature and concentration on the physical properties of Cu-Au alloys. The simulation results such as cohesive energy, lattice parameter, density, elastic constants, bulk modulus, heat capacity, thermal expansion, melting points, and phonon dispersion curves are in good agreement with the available experimental and theoretical data at various temperatures.
The Q-SC potential parameters are more reliable in determining physical properties of metals and their random and ordered alloys studied in this work
|
Page generated in 0.032 seconds