• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 583
  • 350
  • 189
  • 67
  • 33
  • 17
  • 16
  • 10
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 1545
  • 417
  • 323
  • 204
  • 179
  • 156
  • 154
  • 150
  • 120
  • 119
  • 115
  • 108
  • 105
  • 103
  • 101
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Modification of Paper into Conductive Substrate for Electronic Functions : Deposition, Characterization and Demonstration

Montibon, Elson January 2011 (has links)
The thesis investigates the modification of paper into an ion- and electron-conductive material, and as a renewable material for electronic device. The study stretches from investigating the interaction between the cellulosic materials and the conducting polymer to demonstrating the performance of the conductive paper by printing the electronic structure on the surface of the conductive paper. Conducting materials such as conducting polymer, ionic liquids, and multi-wall carbon nanotubes were deposited into the fiber networks. In order to investigate the interaction between the conducting polymer and cellulosic material, the adsorption of the conducting polymer poly(3,4-ethylenedioxythiophene): poly(4-styrene sulfonate) (PEDOT:PSS) onto microcrystalline cellulose (MCC) was performed. Electroconductive papers were produced via dip coating and rod coating, and characterized. The Scanning Electron Microscopy (SEM) / Energy Dispersive Spectroscopy (EDS) images showed that the conducting polymer was deposited in the fiber and in fiber-fiber contact areas. The X-ray Photoelectron Spectroscopy (XPS) analysis of dip-coated paper samples showed PEDOT enrichment on the surface. The effects of fiber beating and paper formation, addition of organic solvents and pigments (TiO2, MWCNT), and calendering were investigated. Ionic paper was produced by depositing an ionic liquid into the commercial base paper. The dependence to temperature and relative humidity of the ionic conductivity was also investigated. In order to reduce the roughness and improve its printability, the ionic paper was surface-sized using different coating rods.  The bulk resistance increased with increasing surface sizing. The electrochemical performance of the ionic paper was confirmed by printing PEDOT:PSS on the surface. There was change in color of the polymer when a voltage was applied. It was demonstrated that the ionic paper is a good ionic conductor that can be used as component for a more compact electronic device construction. Conductive paper has a great potential to be a flexible substrate on which an electronic structure can be constructed. The conduction process in the modified paper is due to the density of charge carriers (ions and electrons), and their short range mobility in the material. The charge carrying is believed to be heterogeneous, involving many charged species as the paper material is chemically heterogeneous. / <p>Fel ordningsnummer (2010:28) är angivet på omslaget av fulltextfilen.</p> / Printed Polymer Electronics on Paper
362

Characterization of Ionic Liquid Solvents Using a Temperature Independent, Ion-Specific Abraham Parameter Model

Stephens, Timothy W. 12 1900 (has links)
Experimental data for the logarithm of the gas-to-ionic liquid partition coefficient (log K) have been compiled from the published literature for over 40 ionic liquids over a wide temperature range. Temperature independent correlations based on the Gibbs free energy equation utilizing known Abraham solvation model parameters have been derived for the prediction of log K for 12 ionic liquids to within a standard deviation of 0.114 log units over a temperature range of over 60 K. Temperature independent log K correlations have also been derived from correlations of molar enthalpies of solvation and molar entropies of solvation, each within standard deviations of 4.044 kJ mol-1 and 5.338 J mol-1 K-1, respectively. In addition, molar enthalpies of solvation and molar entropies of solvation can be predicted from the Abraham coefficients in the temperature independent log K correlations to within similar standard deviations. Temperature independent, ion specific coefficients have been determined for 26 cations and 15 anions for the prediction of log K over a temperature range of at least 60 K to within a standard deviation of 0.159 log units.
363

Investigation of anticorrosive properties of some ionic liquids on selected metals

Nkuna, Anitah 18 May 2018 (has links)
MSc (Chemistry) / Department of Chemistry / The corrosion potential of three ionic liquids (ILs) namely, 5-(Trifluoromethyl)dibenzothiophenium tetrafluoroborate (TDTB), 5-(Trifluoromethyl)dibenzothiophenium trifluoromethanesulfonate (TDTM) and 1-Ethyl-3-methylimidazolium ethyl sulfate [EMIM][ESO4] was studied for mild steel and zinc corrosion in 1.0 M hydrochloric acid using electrochemical, spectroscopic and gravimetric techniques. The studied ILs showed appreciable inhibition efficiencies at the considered concentration range. The highest inhibition efficiencies were observed at 30°C when inhibitor concentration was 8.0 × 10-2 M. The gravimetric data revealed that inhibition efficiencies decreased with an increase in temperature, the lowest inhibition efficiencies for mild steel and zinc were observed at 50°C. The potentiodynamic polarization results indicated that all three inhibitors are mixed-type inhibitors, with TDTM being a predominantly anodic inhibitor. The orders of inhibition efficiency at 8.0 × 10-2 M were TDTM > TDTB > [EMIM][ESO4] and TDTB > TDTM > [EMIM]ESO4] for mild steel and zinc, respectively. All inhibitors showed superior performance in mild steel than in zinc. The adsorption of the studied ILs on mild steel and zinc obeyed the Langmuir adsorption isotherm. The Gibbs free energy of adsorption (ΔG°ads) indicated that the adsorption process was spontaneous, and that corrosion inhibition occurred by a physical adsorption process. Surface morphology analysis through scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) revealed a great improvement in the surface morphologies of mild steel and zinc specimens in the inhibited systems. The Fourier transform infrared spectroscopy studies confirmed the chemical interactions between the metal surface and the ILs. This is observed by means of the disappearance of characteristic absorption bands in the adsorption film FTIR spectra. / NRF
364

Fundamental and Applied Studies on Self-assembling of Polymer-brush-modified Nanoparticles in Ionic Liquid / イオン液体中におけるポリマーブラシ付与微粒子の自己組識化に関する基礎と応用研究

Nakanishi, Yohei 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第21124号 / 工博第4488号 / 新制||工||1697(附属図書館) / 京都大学大学院工学研究科高分子化学専攻 / (主査)教授 辻井 敬亘, 教授 山子 茂, 教授 竹中 幹人 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
365

Toxicological screening of imidazolium based ionic liquids

Stenström, Joakim January 2020 (has links)
Ionic liquids are salts that are in liquid form at room temperature. These compounds have been suggested to be environmentally friendly and are proposed to be replacements for commercially available solvents used in laboratory operations today. There is an increasing interest in these compounds, but toxicological data of ionic liquids are still scarce. In this project five imidazolium based ionic liquids, 1-etyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, 1-octyl-3-methylimidazolium and 1-decyl-3-methylimidazolium were evaluated based on responses on aryl hydrocarbon receptor (DR-Ecoscreen), Nrf2 activity (MCF732cARE), androgen receptor (AR-Ecoscreen) and estrogen receptor (VM7Luc4ER). This was done with an effect based in vitro approach using luciferase bioassays. The results show that imidazolium based ionic liquids have the ability to induce androgen and estrogen receptor activity. It is also shown that imidazolium based ionic liquids can act as antagonists on the androgen receptor. Imidazolium based ionic liquids does not seem cause oxidative stress and is shown to not interact with the aryl hydrocarbon receptor. The ability of 1-octyl-3-methylimidazolium and 1-decyl-3-methylimidazolium to pass the gastrointestinal tract was also tested in a modified transwell caco-2 permeability test, which resembled the human GI-tract. It was shown to be difficult to evaluate if 1-octyl-3-methylimidazolium and 1-decyl-3-methylimidazolium have the ability to pass through the GI-tract and antagonize on the androgen receptor. These results are important from both an environmental as well as human health point of view if imidazolium based ionic liquids are to be accidentally or intentionally release into the environment.
366

The Synthesis of Room-Temperature Ionic Liquids and Their Metathesis Reactions with Dilithium Phthalocyanine

Beauchamp, Andrew Michael 13 April 2012 (has links)
No description available.
367

The Application of Thin Film Ionic Self-assembled Multilayer (ISAM) Nanostructures in Electromechanical Bending Actuators and Micro-fabricated Gas Chromatography (uGC) Devices

Wang, Dong 14 January 2015 (has links)
Ionic self-assembled multilayer (ISAM) thin film nanostructures, including highly porous and conductive gold nanoparticles (GNP), and highly porous and thermally stable silica nanoparticles (SNP), were fabricated via the layer-by-layer (LbL) self-assembly technique. Their application in ionic polymer-metal composite (IPMC) electromechanical bending actuators and microfabricated gas chromatography (microGC) devices were investigated and significant performance improvements of these devices were achieved. IPMC bending actuators, consisting of an ionic electroactive polymer (iEAP) membrane as backbone, ionic liquids (IL) as electrolyte, and ISAM GNP thin film as porous electrode, were fabricated and investigated. The influences of humidity, conductive network composite (CNC), and IL uptake on the bending performance were examined and discussed. An equivalent circuit model to simulate both the electrical and mechanical responses was also proposed and experimentally verified. Moreover, IPMC actuators made from other newly synthesized iEAP membranes were fabricated and tested. Some of them showed promising performance that was comparable or even better as compared to the ones made from Nafion. LbL fabricated ISAM SNPs thin film coatings were also applied in the microGC devices including micro fabricated thermal preconcentrators (microTPC) and separation columns (microSC) as adsorbent and stationary phase materials, respectively. New fabrication approaches were developed to selectively coat uniform conformal ISAM SNP coatings in these devices with different 3D microstructures. Thus, functionalized microTPCs and microSCs showed good performance, which can be further improved by using the ISAM SNPs coating as a nanotemplate for modifying additional polymer adsorbents or as the anchor sites for incorporating functional molecules for targeting detection. / Ph. D.
368

The Abraham Solvation Model Used for Prediction of Solvent-Solute Interactions and New Methods for Updating Parameters

Churchill, Brittani N. 05 1900 (has links)
The Abraham solvation model (ABSM) is an experimentally derived predictive model used to help predict various solute properties. This work covers various uses for the ABSM including predicting molar enthalpies of vaporization, predicting solvent coefficients for two new solvents (2,2,5,5-tetramethyloxolane and diethyl carbonate), predicting values for multiple new ionic liquids (ILs). This work also introduces a novel method for updating IL ABSM parameters by updating cation- and anion-specific values using linear algebra and binary matrices.
369

Preparation, Characterization And Ionic Conductivity Studies On Certain Fast Ionic Conductors

Borgohain, Madhurjya Modhur 06 1900 (has links)
Fast ionic conductors, i.e. materials in which charge transport mainly occurs through the motion of ions, are an important class of materials with immense scope for industrial applications. There are different classes of fast ionic conductors e.g. polymer electrolytes, glasses, oxide ion conductors etc. and they find applications such as solid electrolytes in batteries, in fuel cells and in electro active sensors. There are mixed conducting materials as well which have both ions and electrons as conducting species that are used as electrode materials. Specifically, polymer electrolytes 1−3 have been in use in lithium polymer batteries, which have much more advantages compared to other secondary batteries. Polymer electrolyte membranes have been in use in direct methanol fuel cells (DMFC). The membranes act as proton conductors and allow the protons produced from the fuel (methanol) to pass through. Oxide ion conductors are used in high temperature solid oxide fuel cells (SOFC) and they conduct via oxygen ion vacancies. Fuel cells are rapidly replacing the internal combustion engines, because they are more energy efficient and environment friendly. The present thesis is concerned with the preparation, characterization and conductivity studies on the following fast ionic conductors: (MPEG)xLiClO4, (MPEG)xLiCF3SO3 where (MPEG) is methoxy poly(ethylene glycol), the hydrotalcite [Mg0.66Al0.33(OH)2][(CO3)0.17.mH2O] and the nanocomposite SPE, (PEG)46 LiClO4 with dispersed nanoparticles of hydrotalcite. We also present our investigations of spin probe electron spin resonance (SPESR) as a possible technique to determine the glass transition temperature (Tg) of polymer electrolytes where the conventional technique of Tg determination, namely, differential scanning calorimetry, (DSC), is not useful due to the high crystallinity of the polymers. In the following we summarize the main contents of the thesis. In Chapter 1 we provide a brief introduction to the phenomenon of fast ionic conduction. A description of the different experimental techniques used as well as the relevant theories is also given in this chapter. In most solid polymer electrolytes (SPE), the usability is limited by the low value of the ionic conductivity. A number of different routes to enhance the electrical, thermal and mechanical properties of these materials is presently under investigation. One such route to enhance the ionic conductivity in polymer electrolytes is by irradiating the polymer electrolyte with gamma rays, electron beam, ion beams etc. In Chapter 2, we describe our work on the effect of electron beam (e-beam) irradiation on the solid polymer electrolytes (MPEG)xLiClO4 and (MPEG)xLiCF3SO3. The polymer used is methoxy poly(ethylene glycol) or poly(ethylene glycol) methyl ether with a molecular weight 2000. Salts used are LiClO4 and LiCF3SO3. ’x’ in the subscript is a measure of the salt concentration; it is the ratio of the number of ether oxygens in the polymer chain to that of the Li+ ion. ’x’ values chosen are 100, 46, 30 and 16. Nearly one order of magnitude increase in the conductivity is observed for samples (MPEG)100LiClO4 and (MPEG)16LiCF3SO3 on irradiation. It was found that the increase in the net ionic conductivity is a function of both the irradiation dose and the salt concentration. The enhanced ionic conductivity remains constant for ∼ 100 hrs, which signifies a possible near permanent change in the polymer electrolyte system due to irradiation. The samples were also characterized using DSC and Fourier transform infrared spectroscopy (FTIR). DSC results could be correlated with conductivity findings, giving low Tg values for samples having high conductivity. It was also found that there is a small increase in the crystalline fraction of the samples on irradiation, which agrees with earlier reports on samples irradiated with low dosage. FTIR results are suggestive of decreased cross linking as the reason for increased ionic conductivity. However, this aspect needs a further confirmatory look before the findings can be termed conclusive. In Chapter 3, we describe the studies we have carried out on Li -doped hydrotalcite. We report the details of preparation and characterization of hydrotalcite as well as NMR and ionic conductivity measurements on both doped (with Li+ ions) and undoped hydrotalcite. Hydrotalcite was prepared by co-precipitation method and the composition of hydrotalcite was chosen as [Mg0.66Al0.33(OH)2][(CO3)0.17.mH2O]. Samples were prepared with salt (LiClO4) concentration 5 %, 10 %, 15 %, 20 % and 25 %. It was found that the highest ionic conductivity occurs for the sample with 20 % doping. 7Li NMR plots for all the samples clearly show an overlap of a Gaussian and a Lorentzian lineshape. The Gaussian line is because of the presence of a less mobile fraction of the 7Li+ ions and the Lorentzian line is because of the presence of a more mobile fraction of 7Li+ ions. The highest ionic conductivity was found for the salt concentration 20 % and from the room temperature 7Li NMR studies we found that for this particular concentration, the mobile fraction of the 7Li ion is also maximum. Without the salt doping, the conductivity of the sample was too small to be measured. Temperature variation of both 1H and 7Li NMR was also done, to compare the ionic conductivities from NMR. Another method to obtain enhanced properties in polymer electrolytes is by forming ’nanocomposite’ polymer electrolytes. Nanocomposites are formed by dispersing nanoparticles of certain materials in the polymer electrolyte matrix. Till now, nanoparticles used are mostly oxides of metals, e.g. Al2O3, TiO2, MgO, SiO2 etc and clays like montmorillonite, liponite, hydrotalcite etc. Chapter 4 describes the preparation and characterization of the nanocomposite polymer electrolyte (PEG)46LiClO4 formed with hydrotalcite nanoparticles. The polymer used is PEG, poly(ethylene glycol) of molecular weight 2000, and salt used is LiClO4. The salt concentration is selected so as to give the highest ionic conductivity for the solid polymer electrolyte. Hydrotalcite belongs to a class of materials called LDH, layered double hydroxides. The composition selected is [Mg0.66Al0.33(OH)2][(CO3)0.17 .mH2O], since this is the most stable composition. These materials are easy to prepare in the nano size and are being used in a number of applications. These are characterized by the presence of layers of positively charged double hydroxides separated by layers of anions and water molecules. The water molecules give stability to the structure. Nanoparticles of hydrotalcite were prepared in the laboratory itself. XRD data of hydrotalcite confirm the crystal structure. TEM data show the particle size to be ∼ 50 nm. The polymer electrolyte (PEG)46LiClO4 was doped with these nanoparticles and the doping levels are 1.8 %, 2.1 %, 2.7 %, 3.6 % and 4.5 % by weight. Impedance spectroscopy was used to find the ionic conductivity. We have found that the sample with a doping of 3.6 % by weight gives the highest ionic conductivity and the increase in ionic conductivity is nearly one order of magnitude. DSC was used for thermal characterization of these nanocomposites. The glass transition temperatures, Tg , found from DSC measurements corroborates the ionic conductivity data, giving the lowest Tg for the sample with highest conductivity. Temperature variation of the ionic conductivity shows Arrhenius behavior. 7Li NMR was done on the pristine SPE (PEG)46LiClO4 and the nanocomposite of (PEG)46LiClO4 with 3.6 % filler. The ionic conductivity was also estimated from the temperature variation of 7Li NMR line widths. Studies on the DSC endotherms of the nanocomposites give the fractional crystallinity of the samples. From these studies it can be concluded that the variation in ionic conductivity can be attributed to the change in fractional crystallinity; the nanocomposite polymer electrolyte having highest ionic conductivity, i.e. the NCPE with filler concentration of 3.6 % also has the lowest fractional crystallinity. Additionally, a possible increase in the segmental motion inferred from a reduction in the glass transition temperature coupled with a lowering of the activation energy may also contribute to the increased ionic conductivity in the nanocomposite polymer electrolyte. Glass transition temperature Tg has a very important role in studying the dynamics of polymer electrolytes. In Chapter 5, we explore the possibility of using spin probe electron spin resonance (SPESR) as a tool to study the glass transition temperature of polymer electrolytes. When the temperature of the polymer is increased across the glass transition, the viscosity of the sample decreases. This corresponds to a transition from a slow tumbling regime with τc = 10−6 s to a fast tumbling regime with τc = 10−9 s where τc is the correlation time for the probe dynamics. Spin probe ESR can be used to probe this transition in polymers. We have used 4-hydroxy tempo (TEMPOL) as the spin probe which is dispersed in the nanocomposite polymer electrolyte based on (PEG)46LiClO4 and hydrotalcite. Below and across the glass transition, this nitroxide probe exhibits a powder pattern showing both Zeeman (g) and hyperfine (hf) interaction anisotropy. When the frequency of the dynamics increases such that the jump frequency f is of the same order of magnitude as the anisotropy of the hf interaction, i.e., ∼ 108 Hz, the anisotropy of the interactions averages out and a spectrum of reduced splitting and increased symmetry in the line shape is observed. This splitting corresponds to the nonvanishing isotropic value of the hyperfine tensor and is observed at a temperature higher than but correlated with Tg. The crossover from the anisotropic to isotropic spectrum is reflected in a sharp reduction in the separation between the two outermost components of the ESR spectrum, which corresponds to twice the value of the z-principal component of the nitrogen hyperfine tensor, 2Azz, from ∼75 G to ∼ 35 G. In our study, we have varied the concentration of the nano-fillers. The Tg for all the samples were estimated from the measurement of T50G and the known correlation between 4 T50G and Tg, where T50G is the temperature at which the extrema separation (2Azz) of the ESR spectra becomes 50 Gauss. The values obtained from this method are compared with the values found from DSC done on the same samples. Within experimental error, these two techniques give reasonably close values. Tg’s were also estimated by a cross over in the correlation time (τc) vs temperature plot. The τc values were calculated using a spectral simulation program. We conclude that spin probe ESR can be an alternative to the DSC technique for polymers with high fraction of crystallinity, for which DSC often does not give any glass transition signature. In Appendix I, ionic conductivity studies on quenched and gamma irradiated polymer electrolytes (PEG)46LiClO4 and (MPEG)16LiClO4 is done. It is observed that, (i) the samples quenched to 77 K after melting show enhancement of ionic conductivity by a factor of 3 & 4; (ii) on irradiation, the ionic conductivity decreases for a dose of 5 kGy and subsequently, keeps on increasing for higher doses of 10 kGy and 15 kGy. In Appendix II, the BASIC language program (eq-res.bas) used for impedance data analysis is given.
370

The Mizoroki-Heck Reaction in Tunable Aryl Alkyl Ionic Liquids

Lerch, Swantje, Fritsch, Stefan, Strassner, Thomas 19 March 2024 (has links)
We report the use of imidazolium based tunable aryl alkyl ionic liquids (TAAILs) as solvents in the Mizoroki–Heck reaction. Different commercially available palladium sources, inorganic bases, TAAILs and reaction conditions were tested for the synthesis of trans-stilbene using bromobenzene and styrene. A variety of different stilbene derivatives were synthesized with exclusive formation of the (E)-isomers and isolated yields up to 97%. We were able to optimize the reaction conditions using only 0.25 mol% of Pd(OAc)2 as the catalyst and a reaction time of 4 hours. No additional ligands or additives are used in the reaction. The catalytic system using TAAILs achieved higher yields than commercially available imidazolium and phosphonium ionic liquids, demonstrating the potential of tailored ionic liquids as a reaction medium for the Mizoroki– Heck reaction.

Page generated in 0.046 seconds