• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Avalia??o da toxicidade causada pela exposi??o a IONPS utilizando zebrafish como organismo modelo

Oliveira, Giovanna Medeiros Tavares de 28 August 2017 (has links)
Submitted by PPG Medicina e Ci?ncias da Sa?de (medicina-pg@pucrs.br) on 2017-12-26T13:35:05Z No. of bitstreams: 1 GIOVANNA_MEDEIROS_TAVARES_DE_OLIVEIRA_TES.pdf: 3690052 bytes, checksum: e6e9b4fea2305637782a214e8f45af2d (MD5) / Approved for entry into archive by Caroline Xavier (caroline.xavier@pucrs.br) on 2017-12-29T10:45:02Z (GMT) No. of bitstreams: 1 GIOVANNA_MEDEIROS_TAVARES_DE_OLIVEIRA_TES.pdf: 3690052 bytes, checksum: e6e9b4fea2305637782a214e8f45af2d (MD5) / Made available in DSpace on 2017-12-29T10:47:48Z (GMT). No. of bitstreams: 1 GIOVANNA_MEDEIROS_TAVARES_DE_OLIVEIRA_TES.pdf: 3690052 bytes, checksum: e6e9b4fea2305637782a214e8f45af2d (MD5) Previous issue date: 2017-08-28 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES / Initially used in magnetic resonance imaging in the late 1970s, iron oxide nanoparticles (IONPs) have wide application in the medical field today, in diagnostics, drug delivery, cellular therapies and theragnostic. The high biocompatibility, small size, functionalization and ability to respond to an applied magnetic field gives this nanoparticle great advantage over other nanomaterials. Studies have demonstrated the low toxicity and high applicability of this nanomaterial in the clinic, however some questions remain unanswered. When in contact with the in vivo metabolism, nanomaterials can behave in a way to degrade their coating and release the ions contained in their nucleus. In fact, side effects related to exposure to IONPs are mainly related to the release of its elemental nucleus; which, when endocyted, can be degraded inside the lysosomes and release [Fe] ions. Changes in iron homeostasis can be very damaging to the cell, causing inflammation, lipid peroxidation, and oxidative stress. Organs more sensitive to iron accumulation, such as the heart, may demonstrate apoptosis and tissue degeneration. Such toxic effects are easily detected in studies using zebrafish as an animal model. Protocols with zebrafish embryos for toxicological analysis have the advantage of allowing large-scale screening on development, survival, behavior, gene expression and cardiotoxicity. Under this scenario, this thesis aims to evaluate the toxicity of commertial and "in house" synthesis of Iron Oxide Nanoparticles in zebrafish. Behavioral analysis of locomotion and gene expression of zebrafish larvae exposed to uncoated and dextran-coated iron oxide nanoparticles indicated a toxicity at low concentrations of nanoparticle exposure, contrary to what is reported in the literature. In addition, changes in the apoptotic pathway suggest that this route is closely linked to the behavioral effects found. Subsequent analyzes, targeting cardiotoxicity, suggested that concentrations above 100 ?g/ml are damaging for the heart. Molecular analyzes in the groups exposed to the iron oxide nanoparticle and to iron solution helped to establish a parallel between the toxicity of these nanoparticles and the pathways of iron metabolism. / Inicialmente utilizadas em exames de resson?ncia magn?tica no final dos anos 1970 as nanopart?culas de ?xido de ferro (IONPs) possuem hoje vasta aplica??o na ?rea m?dica, em exames de diagn?stico, sistema de envio de drogas, terapias celulares e como agente teragn?stico. Sua alta biocompatibilidade, pequeno tamanho, facilidade de manipula??o e capacidade de responder a aplica??o externa de campo magn?tico lhe oferece grande vantagem sobre outros nanomaterias. Estudos vem demostrando a baixa toxicidade e alta aplicabilidade deste nanomaterial na cl?nica, entretanto algumas quest?es ainda se encontram sem resposta. Quando em contato com o metabolismo in vivo, nanomateriais podem se comportar de forma a degradar sua estrtutura externa e liberar os ?oins contidos no seu n?cleo. De fato, efeitos adversos relacionado a exposi??o a IONPs est?o majoritariamente relacionadas a libera??o do seu n?cleo elementar; que, quando endocitado, pode ser degradado nos lisossomos e liberar ?ons [Fe]. Altera??es na homeostase de ferro podem ser muito prejudiciais ? c?lula, causando inflama??o, peroxida??o lip?dica e estresse oxidativo. ?rg?os mais sens?veis ao ac?mulo do ferro, como o cora??o, podem apresentar apoptose e degenera??o tecidual. Tais efeitos t?xicos s?o facilmente detectados em estudos utilizando zebrafish como animal modelo. Protocolos com embri?es de zebrafish para an?lise toxicol?gica possuem a vantagem de permitir estudos em grande escala de efeitos no desenvolvimento, sobreviv?ncia, comportamento, express?o g?nica e cardiotoxicidade. Sob esse cen?rio, esta tese tem como objetivo avaliar a toxicidade de Nanopart?culas de Oxido de Ferro (IONPs) de s?ntese pr?pria e comerciais no modelo experimental zebrafish. An?lise comportamental de locomo??o e express?o g?nica de larvas de zebrafish expostas a Nanopart?culas de ?xido de Ferro puras (sem envolt?rio) e revestidas com dextran indicou uma toxicidade em baixas concentra??es de exposi??o ? nanopart?culas, contrario ao que ? relatado na literatura. Al?m disso, altera??es na via apopt?tica sugere que esta rota esteja intimamente ligada aos efeitos comportamentais encontrados. An?lises posteriores, direcionadas ? cardiotoxicidade sugerem efeitos t?xicos acima de 100 ?g/mL. An?lises gen?mica de express?o nos grupos expostos ? nanopart?cula de ?xido de ferro e ? solu??o de ferro met?lico (usado como controle de positivo de excesso de ferro) permitiram a identifica??o de um paralelo entre toxicidade destas nanopart?culas e as vias de metaboliza??o do ferro.
2

Evaluation of different block-copolymer coatings of iron oxide nanoparticles by flash nanoprecipitation / Utvärdering av olika blocksampolymerer för ytbeläggning av järnoxidpartiklar framställda via flash nanoprecipitering

Bogdan, Felix January 2023 (has links)
Nanopartiklar (NP) erbjuder unika möjligheter för medicinska tillämpningar, inklusive kontrollerad frisättning av cancerläkemedel, användning som bildkontrast vid avbildningsprocedurer eller hypertermisk behandling av cancerceller. Flash nanoprecipitation (FNP) producerar NPs för att kombinera dessa tillämpningar i en snabb, billig och skalbar beläggningsprocess. Användning av FNP med en Multi-Inlet Vortex Mixer (MIVM) är en lovande metod för att enkelt belägga hydrofoba oljesyra järnoxid NP (IONP) med olika biokompatibla block-copolymerer. Amfifila block-copolymerer baserade på hydrofil polyetylenglykol (PEG) och hydrofob poly(laktid) (PLA), poly(laktid-co-glykolid) (PLGA) eller poly(kaprolakton) (PCL) syntetiserades framgångsrikt. Den organiska katalysatorn 1,8-diazabicyclo[5.4.0]undec-7-en (DBU) användes för att öka biokompatibiliteten hos de resulterande polymererna PEG-PLA, PEG-PL7,5KG2,5KA och PEG2K-PCL2K. Syntes av hydroxylterminerad poly(akrylsyra) (PAA-OH) följt av polymerisation med PLGA prövades. De amfifila blockpolymererna användes i kombination med stabilisatorn polysorbat 80 (Tween80®) i FNP för att bilda nakna polymera NP med en MIVM som reaktor. DLS och STEM bekräftade partikelstorlekar mellan 50 - 100 nm. Tillsatsen av 13 ± 2 nm hydrofoba oljesyra-IONPs gav en ökning av partikelstorleken samt en ökning av partikelstabiliteten över tid. STEM-bilder visade att enstaka IONPs fästs på utsidan av de polymera NPs. Hydrofoba interaktioner mellan polymeren och oleinsyra-IONPs är möjliga. För att uppnå inkapsling av oljesyra-IONPs bör justeringar av processparametrarna för FNP övervägas i framtida forskning. Ytterligare experiment krävs för att utforska möjliga läkemedelstillsatser, frisättningsmekanismer och hypertermi hos de polymerbelagda IONP-partiklarna. / Nanoparticles (NPs) offer unique possibilities for medical applications, including the controlled release of cancer drugs, the use as imaging contrast during imaging procedures or the hyperthermic treatment of cancer cells. Flash nanoprecipitation (FNP) produces NPs to combine these applications in a fast, cheap, and scalable coating process. The use of FNP with a Multi-Inlet Vortex Mixer (MIVM) is a promising method to easily coat hydrophobic oleic acid iron oxide NPs (IONPs) with various biocompatible block-copolymers. Amphiphilic block-copolymers based on hydrophilic polyethylene glycol (PEG) and hydrophobic poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA) or poly(caprolactone) (PCL) were successfully synthesized. The organic catalyst 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) was used to increase biocompatibility of the resulting polymers PEG-PLA, PEG-PL7.5KG2.5KA and PEG2K-PCL2K. The synthesis of hydroxyl terminated poly(acrylic acid) (PAA-OH) followed by the polymerization with PLGA was attempted. The amphiphilic block-copolymers were used in combination with the stabilizer polysorbate 80 (Tween80®) in FNP to form bare polymeric NPs using a MIVM as the reactor. DLS and STEM confirmed particle sizes between 50 - 100 nm. The addition of 13 ± 2 nm hydrophobic oleic acid IONPs yielded an increase in particle size as well as increase in particle stability over time. STEM images showed attachment of single IONPs to the outside of the polymeric NPs. Hydrophobic interactions between the polymer and oleic acid IONPs are possible. To achieve encapsulation of the oleic acid IONPs, adjustments to the process parameters of FNP should be considered in future research. Additional experiments are required to explore possible drug addition, release mechanisms and hyperthermia behavior of the polymer coated IONPs particles.

Page generated in 0.0215 seconds