• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 140
  • 31
  • 24
  • 18
  • 7
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 281
  • 281
  • 92
  • 54
  • 34
  • 31
  • 28
  • 27
  • 24
  • 24
  • 23
  • 22
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Crustal architecture of the Kiruna mining district : Structural framework, geological modeling, and physical rock property distribution

Veress, Ervin Csaba January 1900 (has links)
Rapid technological advancements and growing environmental consciousness created a shifting dynamic of metal demand within the context of contemporary global challenges. The metals play a pivotal role in this transformation and remarkable surge in demand is expected. Mining districts such as the Kiruna area in northern Sweden, provide access to raw materials, assuring supply chain security, sustainability, and an environmentally friendly future. The district is part of the northern Norrbotten ore province, Sweden and is known for hosting the Kiruna-type iron oxide-apatite (IOA) deposits with associated magnetite-hematite-REE ores such as the Per Geijer deposits, and a range of other deposits, including the Viscaria Cu-(Fe-Zn), Pahtohavare Cu-Au and the Rakkurijärvi iron oxide-copper-gold (IOCG) deposits.  As the discoveries of significant near-surface deposits are declining, mining companies face a pivotal choice between pursuing resource extraction from lower-grade reserves or to focus on deeper exploration targets. The geological understanding of the subsurface decreases with increasing depth, and the reliance on geophysical techniques becomes more important in reducing the search space. Using geophysics to locate and understand elements of a mineral system requires a good understanding of the physical and chemical properties of the rocks that can be translated into geological implications. Mineral system knowledge and geological concepts can be translated into geological models that can be further used in geophysical inversions with the aim of improving targeting by iterative modeling. A geophysical inversion is in fact a realization of a physical property model, therefore the value added by the geophysical model is dependent of how well the relationship between the geology and its petrophysical signature is understood. The petrophysical characterization of geological environments offers the possibility to improve the understanding of geophysical responses, serving as a link in iterative geological-geophysical modeling.  The approach presented in the current study includes the building of three-dimensional lithological and structural framework models, and investigating the petrophysical footprint in connection with lithology, alteration, and rock fabric from the Kiruna mining district. Geological modeling and petrophysical characterization are important components within the comprehensive mineral system modeling framework and enhance geophysical investigations aimed at detecting and assessing iron oxide mineral systems. A rule-based hybrid implicit-explicit geological modeling technique proved to be useful in the integration of surface and subsurface data of the Kiruna mining district, and a structural framework and geological model was produced that provides insights into the relationship between lithological units and structures. Drill core observations indicate a competency contrast between lithological units confirming previous surface-based observations. Deposit scale structural analysis in connection with the geological models indicated the proximity of NW-SE to SW-NE trending brittle conjugate fault networks with iron-oxide apatite ore lenses, revealing juxtaposition of individual ore lenses. Complementing structural analysis and geological modeling, petrophysical characterization in connection with lithogeochemical, mineralogical, and textural investigations revealed that density and p-wave seismic velocity can be used as a general lithological indicator, while magnetic susceptibility is influenced by secondary processes. Heterogeneous strain accommodation by lithological units indicates a strong influence on density, seismic properties, and the ferromagnetic properties of the samples. Metasomatic processes alter the intrinsic properties of the samples by increasing or decreasing the physical properties of the rocks from the Kiruna area, by controlling the feldspar, mica, magnetite, and ferromagnesian mineral content. Nevertheless, an extensive sample population must be investigated to understand the large-scale effects. The present work serves as a foundation for quantitatively integrated exploration models that use geological models and petrophysical characterization as calibration tools to model mineral systems.
172

Polarization Analyzed Small Angle Neutron Scattering of Ferrite Nanoparticles

Hasz, Kathryn 13 June 2014 (has links)
No description available.
173

MICRO- AND NANO-MATERIALS FOR DRUG DELIVERY AND BIOIMAGING APPLICATIONS

Yan, Huan 07 April 2015 (has links)
No description available.
174

Investigation of Electronic Structure Effects of Transition Metal Oxides toward Water Oxidation and CO2 Reduction Catalysis

Fugate, Elizabeth Anne 01 September 2016 (has links)
No description available.
175

Performance Evaluation of Wet Metal Plate Electrostatic Precipitator

Bharmal, Huzefa A. January 2005 (has links)
No description available.
176

CHEMICAL LOOPING GASIFICATION PROCESSES

Li, Fanxing 27 August 2009 (has links)
No description available.
177

INTERFACIAL INTERACTIONS OF OLIGOANILINES WITH SOLID SURFACES

MOHTASEBI, AMIRMASOUD 11 1900 (has links)
It is known that organic monolayers on solid surfaces can enable electronic properties that are absent in the bulk of the solid materials. Often, once the organic film come into the contact with a solid surface, the established electronic interaction at their interface remains undisturbed. However, using a redox-active organic monolayer creates the possibility for modulating the extent and the direction of the interfacial charge transfer, establishing a switch at the interface. The theme of this thesis is investigation of the interfacial interaction of different redox states of a molecular switch, phenyl-capped aniline tetramer (PCAT) with iron oxide and graphite surfaces and their potential application in electronic devices. The nucleation and growth of submonolayer films of different oxidation states of PCAT on iron oxide surface was studied. Using atomic force microscopy and scaling island size distribution method the surface diffusion parameters of these islands were evaluated. Using X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy the changes in these organic monolayers before and after interaction with iron oxide were demonstrated. However, these techniques were unable to provide similar data from the solid surface side of the interface. Instead, we were able to demonstrate the changes in the iron oxide film as a result of interfacial charge transfer using electrical conductivity measurement techniques. Based on this information a microfluidic chemical sensor based on the interface of pencil film and PCAT for quantification of free chlorine in drinking water was constructed. Using XPS and UV-vis spectroscopy it was shown that the interaction the organic monolayer with sodium hypochlorite solution leads to the development of positive charges on the backbone of PCAT. This electrostatic charge can affect the charge transport in the pencil film causing the modulation of electrical conductivity of the film. The presented work demonstrates alternative pathways for the design of novel hybrid electronic devices based on thin molecular film and solid surfaces. / Thesis / Doctor of Philosophy (PhD)
178

Synthesis and Characterization of Novel Polyethers and Polypeptides for Use in Biomedicine and Magnetic Resonance Imaging

Liang, Jue 24 January 2014 (has links)
Copolymers that contain terminal or pendent functional groups have great potential in the biomedical area due to their biocompatibility and tunable properties.1-3 In this research, two vinyl functional epoxides, vinyldimethylsilylpropyl glycidyl ether (VSiGE) and ethoxy vinyl glycidyl ether (EVGE), were synthesized. These heterobifunctional monomers were polymerizable via the epoxide groups and can be functionalized via thiol-ene reactions through the pendent vinyl groups. A series of amphiphilic block copolyethers based on poly(ethylene oxide) and poly(1,2-butylene oxide) that incorporate VSiGE or EVGE were synthesized and characterized. The vinyl ether and vinyl silane functional groups were functionalized after polymerization and the functional polymers formed pH-sensitive micelles in aqueous medium. The copolyethers were loaded with ritonavir yielding well-controlled nanoparticles. Poly(L-glutamic acid) is comprised of naturally occurring L-glutamic acid repeating units that are linked together with amide bonds. In this research, we have prepared magnetic block ionomer complexes based on poly(ethylene oxide)-b-poly(L-glutamic acid) copolymers. This is of interest due to the biocompatibility and biodegradable nature of the poly(L-glutamic acid) component of the backbone. Allyl- and thiol-functional poly(ethylene oxide)-b-poly(L-glutamic acid) copolymers were also synthesized and coated onto the surface of iron oxide nanoparticles. Allyl- and thiol-tipped single particles were reacted with each other to prepare magnetic clusters. Transverse relaxivities of the clusters were found to be significantly higher than that of single particles. One major problem in commercial development of therapeutic proteins is their poor transport across cellular membranes and biological barriers such as the blood-brain barrier (BBB). One solution to this problem is to modify proteins with amphiphilic block copolymers such as PEO-b-PPO-b-PEO, Pluronics®. However, it isn't possible to independently tune the two PEO block lengths with commercial Pluronics® since a difunctional PPO macroinitator is utilized to grow both PEO blocks simultaneously (HO-EOn-b-POm-b-EOn-OH). Another challenge is introducing functional group which allows post-polymerization functionalization for specific applications. In this study, a series of heterobifunctional asymmetric amino-EOn1-b-POm-b-EOn2-OH block copolymers (APs) with different molecular weights of each block were synthesized and the amino terminal group was conjugated to an antioxidant enzyme, Cu/Zn superoxide dismutase (SOD1). The conjugates were characterized and their cellular uptake was investigated. / Ph. D.
179

Synthese molekularer Bildgebungssonden für die molekulare Magnetresonanztomographie

Figge, Lena 01 July 2014 (has links)
Zweck der molekularen Bildgebung ist es, biologische Prozesse auf zellulärer und molekularer Ebene zu messen und zu charakterisieren, um so die Ursachen von Krankheiten und Veränderungen im Organismus zu diagnostizieren. Sie basiert auf dem Einsatz molekularer Bildgebungssonden, welche einen spezifischen biologischen Vorgang darstellen oder sich spezifisch in dem zu untersuchenden Gewebe anreichern oder aktiviert werden. Ziel dieser Arbeit war die Entwicklung und Analyse neuer Bildgebungssonden für die spezifische in-vivo-Bildgebung der Apoptose und von Enzymaktivitäten mittels Magnetresonanztomographie (MRT) auf der Grundlage sehr kleiner Eisenoxidnanopartikel (very small iron oxide particles, VSOP). VSOP sind superparamagnetisch und durch ihre negativ geladene Citrathülle elektrostatisch stabilisiert. Für die Apoptose-Bildgebung sollte durch Bindung des Proteins Annexin A5 (AnxA5) an die Citrathülle der VSOP eine zielgerichtete Sonde hergestellt werden (AnxA5-VSOP). Für die Bildgebung von Enzymaktivitäten sollte eine durch die Matrixmetalloproteinase-9 (MMP-9) aktivierbare Sonde hergestellt werden (Protease-spezifische Eisenoxidpartikel, PSOP). / The goal of molecular imaging is to characterize and measure biological processes at cellular and molecular levels for the purpose of diagnosing the cause of diseases and molecular abnormalities. Molecular imaging is based on the use of probes with a high affinity to the target tissue and / or which are specifically activated. The aim of this study was to develop and analyze new molecular imaging probes for the in vivo imaging of apoptosis and enzyme activity using magnetic resonance imaging (MRI), based on very small iron oxide particles (VSOP). VSOP are superparamagnetic and electrostatically stabilized due to their negatively charged citrate surface. For the imaging of apoptosis the protein annexin A5 (AnxA5) was coupled to the citrate surface (AnxA5-VSOP). For the imaging of enzyme activities an activatable imaging probe with a cleavage site for the matrix metalloproteinase 9 (MMP-9) was synthesized (protease-specific iron oxide particles, PSOP).
180

Synthesis, characterization and toxicological evaluation of carbon-based nanostructures

Mendes, Rafael Gregorio 30 November 2015 (has links) (PDF)
The synthesis, characterization and biological evaluation of different graphene-based nanoparticles with potential biomedical applications are explored. The results presented within this work show that eukaryotic cells can respond differently not only to different types of nanoparticles, but also identify slight differences in the morphology of nanoparticles, such as size. This highlights the great importance of the synthesis and thorough characterization of nanoparticles in the design of effective nanoparticle platforms for biological applications. In order to test the influence of morphology of graphene-based nanoparticles on the cell response, nanoparticles with different sizes were synthesized and tested on different cells. The synthesis of spherical iron-oxide nanoparticles coated with graphene was accomplished using a colloidal chemistry route. This synthesis route was able to render nanoparticle samples with narrow size distributions, which can be taken as monodispersed. Four different samples varying in diameter from 10 to 20 nm were produced and the material was systematically characterized prior to the biological tests. The characterization of the material suggests that the iron oxide nanoparticles consist of a mix of both magnetite and maghemite phases and are coated with a thin graphitic layer. All samples presented functional groups and were similar in all aspects except in diameter. The results suggest that cells can respond differently even to small differences in the size of the nanoparticles. An in situ study of the coating of the iron-oxide nanoparticles using a transmission electron microscope revealed that it is possible to further graphitize the remaining oleic acid on the nanoparticles. The thickness of the graphitic coating was controlled by varying the amount of oleic acid on the nanoparticles. The in situ observations using an electron beam were reproduced by annealing the nanoparticles in a dynamic vacuum. This procedure showed that it is not only possible to coat large amounts of iron oxide nanoparticles with graphene using oleic acid, but also to improved their magnetic properties for other applications such as hyperthermia. This study therefore revealed a facile route to grow 2D graphene takes on substrates using oleic acid as a precursor. The synthesis of nanographene oxide nanoparticles of different sizes was in a second approach accomplished by using the Hummers method to oxidize and expand commercially available graphite. The size of the oxidized graphite was adjusted by sonicating the samples for different periods of time. The material was also thoroughly characterized and demonstrated to have two distinctive average size distributions and possess functional groups. The results suggest that different size flakes can trigger different cell response. The synthesis, characterization and biological evaluation of graphene nanoshells were performed. The graphene nanoshells were produced by using magnesia nanoparticles as a template to the graphene nanoshells. The coating of magnesia with graphene layers was accomplished using chemical vapor deposition. The nanoshells were obtained by removing the magnesia core. The size of the nanoshells was determined by the size of the magnesia nanoparticles and presented a broad size distribution since the diameter of the magnesia nanoparticles could not be controlled. The nanoshells were also characterized and the biological evaluation was performed in the Swiss Federal Laboratories for Materials Science and Technology (EMPA), in Switzerland. The results suggest that despite inducing the production of reactive oxygen species on cells, the nanoshells did not impede cell proliferation. / Die Herstellung, Charakterisierung und biologische Auswertung von verschiedenen Graphen-basierten Nanopartikeln mit einer potenziellen biomedizinischen Anwendung wurden erforscht. Die vorgestellten Ergebnisse im Rahmen dieser Arbeit zeigen, dass eukaryotische Zellen unterschiedlich reagieren können, wenn sie mit Nanopartikeln unterschiedlicher Morphologie interagieren. Die Zellen können geringe Unterschiede in der Morphologie, insbesondere der Größe der Nanopartikeln, identifizieren. Dies unterstreicht den Einfluss der Herstellungsmethoden und die Notwendigkeit einer gründlichen Charakterisierung, um ein effektives Design von Nanopartikeln für biologische Anwendungen zu erreichen. Um den Einfluss der Größe von Graphen-basierten Nanopartikel auf das Zellverhalten zu erforschen, wurden verschiedene Graphen-beschichte Eisenoxid-Nanopartikelproben durch eine kolloidchemische Methode hergestellt. Dieses Herstellungsverfahren ermöglicht die Synthese von Nanopartikeln mit engen Größenverteilungen, die als monodispers gelten können. Vier Proben mit unterschiedlichen Durchmessern (von 10 bis 20 nm) wurden hergestellt und vor den biologischen Untersuchungen systematisch charakterisiert. Die Probencharakterisierung deutet auf eine Mischung aus Magnetit- und Maghemit-Kristallphasen hin, außerdem besitzen die Nanopartikel eine dünne Graphitschicht. Die spektroskopischen Ergebnisse auch zeigen außerdem, dass alle Proben funktionelle Gruppen auf ihrer Oberfläche besitzen, sodass sie in allen Aspekten, außer Morphologie (Durchmesser), ähnlich sind. Die biologischen Untersuchungen deuten darauf hin, dass Zellen unterschiedliche Größen von Eisenoxid-Nanopartikeln reagieren können. Ein in situ Untersuchung der Beschichtung der Eisenoxid-Nanopartikel wurde mit einem Transmissionelektronenmikroskop durchgeführt. Die Ergebnisse zeigen, dass eine dünne Schicht von Ölsäure aus dem Syntheseprozess auf den Nanopartikeln verbleibt. Diese Schicht kann mit einem Elektronstrahl in Graphen umgewandelt werden. Die Dicke der Graphitschicht auf den Nanopartikeln kann durch die Menge der eingesetzten Ölsäure kontrolliert werden. Die in situ Beobachtungen der Graphenumwandlung konnte durch erhitzen der Nanopartikeln in einem dynamischen Vakuum reproduziert werden. Das Brennen der Eisenoxid-Nanopartikel ermöglicht nicht nur die Graphitisierung der Ölsäure, sondern auch eine Verbesserung der magnetischen Eigenschaften der Nanopartikel für weitere Anwendungen, z. B. der Hyperthermie. Die Umwandlung der Ölsäure in Graphen konnte so als relativ einfaches Verfahren der Beschichtung von zweidimensionalen (2D) Substraten etabliert werden. Die Herstellung von Nanographenoxid mit unterschiedlichen Größen wurde mit der Hummers-Method durchgeführt. Die unterschiedlichen Größen der Nanographenoxidpartikel wurde durch eine Behandlung in Ultraschallbad erreicht. Zwei Proben mit deutlicher Verteilung wurden mit mehreren Verfahren charakterisiert. Beide Proben haben Nanographenoxid Nanoteilchen mit verschiedenen funktionellen Gruppen. Die biologische Charakterisierung deutet darauf hin, dass unterschiedliche Größen des Nanographens ein unterschiedliches Zellverhalten auslösen. Abschließend, wurde die Herstellung, Charakterisierung und biologische Auswertung von Graphen-Nanoschalen durchgeführt. Die Graphen-Nanoschalen wurden mit Magnesiumoxid-Nanopartikeln als Template hergestellt. Die Beschichtung des Magnesia mit Graphen erforgte durch die chemische Gasphasenabscheidung. Die Nanoschalen wurden durch Entfernen des Magnesia-Kerns erhalten. Die Größe der Nanohüllen ist durch die Größe der Magnesia-Kerns bestimmt und zeigt eine breite Verteilung, da der Durchmesser der Magnesiumoxid-Nanopartikel gegeben war. Die Nanoschalen wurden ebenfalls mit Infrarot- und Röntgen Photoemissionspektroskopie charakterisiert und die biologische Bewertung wurde im Eidgenössische Materialprüfungs- und Forschungsanstalt (EMPA) durchgeführt, in der Schweiz. Die Ergebnisse zeigen, dass zwar die Produktion von reaktiven Sauerstoffspezies in den Zellen ausgelöst wird, diese sich aber weiterhin vermehren können.

Page generated in 0.0489 seconds