Spelling suggestions: "subject:"ISM: 8molecules"" "subject:"ISM: amolecules""
11 |
L '(CO)/L-FIR RELATIONS WITH CO ROTATIONAL LADDERS OF GALAXIES ACROSS THE HERSCHEL SPIRE ARCHIVEKamenetzky, J., Rangwala, N., Glenn, J., Maloney, P. R., Conley, A. 26 September 2016 (has links)
We present a catalog of all CO (J = 4-3 through J = 13-12), [ C I], and [ N II] lines available from extragalactic spectra from the Herschel SPIRE Fourier Transform Spectrometer (FTS) archive combined with observations of the low-J CO lines from the literature and from the Arizona Radio Observatory. This work examines the relationships between L-FIR, L'(CO), and L-CO/L-CO,L-1-0. We also present a new method for estimating probability distribution functions from marginal signal-to-noise ratio Herschel FTS spectra, which takes into account the instrumental "ringing" and the resulting highly correlated nature of the spectra. The slopes of log(L-FIR) versus log (L'(CO)) are linear for all mid- to high-J CO lines and slightly sublinear if restricted to (ultra) luminous infrared galaxies ((U) LIRGs). The mid-to high-J CO luminosity relative to CO J - 1-0 increases with increasing L-FIR, indicating higher excitement of the molecular gas, although these ratios do not exceed similar to 180. For a given bin in L-FIR, the luminosities relative to CO J = 1-0 remain relatively flat from J = 6-5 through J = 13-12, across three orders of magnitude of L-FIR. A single component theoretical photodissociation region (PDR) model cannot match these flat SLED shapes, although combinations of PDR models with mechanical heating added qualitatively match the shapes, indicating the need for further comprehensive modeling of the excitation processes of warm molecular gas in nearby galaxies.
|
12 |
THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES FROM THE SPT SURVEYStrandet, M. L., Weiss, A., Vieira, J. D., de Breuck, C., Aguirre, J. E., Aravena, M., Ashby, M. L. N., Béthermin, M., Bradford, C. M., Carlstrom, J. E., Chapman, S. C., Crawford, T. M., Everett, W., Fassnacht, C. D., Furstenau, R. M., Gonzalez, A. H., Greve, T. R., Gullberg, B., Hezaveh, Y., Kamenetzky, J. R., Litke, K., Ma, J., Malkan, M., Marrone, D. P., Menten, K. M., Murphy, E. J., Nadolski, A., Rotermund, K. M., Spilker, J. S., Stark, A. A., Welikala, N. 10 May 2016 (has links)
We use the Atacama Large Millimeter/submillimeter Array (ALMA) in Cycle 1 to determine spectroscopic redshifts of high-redshift dusty star-forming galaxies (DSFGs) selected by their 1.4 mm continuum emission in the South Pole Telescope (SPT) survey. We present ALMA 3 mm spectral scans between 84 and 114 GHz for 15 galaxies and targeted ALMA 1 mm observations for an additional eight sources. Our observations yield 30 new line detections from CO, [CI], [NII], H2O and NH3. We further present Atacama Pathfinder Experiment [CII] and CO mid-J observations for seven sources for which only a single line was detected in spectral-scan data from ALMA Cycle 0 or Cycle 1. We combine the new observations with previously published and new millimeter/submillimeter line and photometric data of the SPT-selected DSFGs to study their redshift distribution. The combined data yield 39 spectroscopic redshifts from molecular lines, a success rate of >85%. Our sample represents the largest data set of its kind today and has the highest spectroscopic completeness among all redshift surveys of high-z DSFGs. The median of the redshift distribution is z = 3.9 +/- 0.4, and the highest-redshift source in our sample is at z = 5.8. We discuss how the selection of our sources affects the redshift distribution, focusing on source brightness, selection wavelength, and strong gravitational lensing. We correct for the effect of gravitational lensing and find the redshift distribution for 1.4 mm selected sources with a median redshift of z = 3.1 +/- 0.3. Comparing to redshift distributions selected at shorter wavelengths from the literature, we show that selection wavelength affects the shape of the redshift distribution.
|
13 |
Molecular gas properties of a lensed star-forming galaxy at z ~ 3.6: a case studyDessauges-Zavadsky, M., Zamojski, M., Rujopakarn, W., Richard, J., Sklias, P., Schaerer, D., Combes, F., Ebeling, H., Rawle, T. D., Egami, E., Boone, F., Clément, B., Kneib, J.-P., Nyland, K., Walth, G. 14 September 2017 (has links)
We report on the galaxy MACSJ0032-arc at z(CO) = 3.6314 discovered during the Herschel Lensing snapshot Survey of massive galaxy clusters, and strongly lensed by the cluster MACSJ0032.1+1808. The successful detections of its rest-frame ultraviolet (UV), optical, far-infrared (FIR), millimeter, and radio continua, and of its CO emission enable us to characterize, for the first time at such a high redshift, the stellar, dust, and molecular gas properties of a compact star-forming galaxy with a size smaller than 2.5 kpc, a fairly low stellar mass of 4.8(-1.0)(+0.5) x 10(9) M circle dot, and a moderate IR luminosity of 4.8(-0.6)(+1.2) x 10(11) L circle dot. By combining the stretching effect of the lens with the high angular resolution imaging of the CO(10) line emission and the radio continuum at 5 GHz, we find that the bulk of the molecular gas mass and star formation seems to be spatially decoupled from the rest-frame UV emission. About 90% of the total star formation rate is undetected at rest-frame UV wavelengths because of severe obscuration by dust, but is seen through the thermal FIR dust emission and the radio synchrotron radiation. The observed CO(43) and CO(65) lines demonstrate that high-J transitions, at least up to J = 6, remain excited in this galaxy, whose CO spectral line energy distribution resembles that of high-redshift submm galaxies, even though the IR luminosity of MACSJ0032-arc is ten times lower. This high CO excitation is possibly due to the compactness of the galaxy. We find evidence that this high CO excitation has to be considered in the balance when estimating the CO-to-H-2 conversion factor. Indeed, the respective CO-to-H-2 conversion factors as derived from the correlation with metallicity and the FIR dust continuum can only be reconciled if excitation is accounted for. The inferred depletion time of the molecular gas in MACSJ0032-arc supports the decrease in the gas depletion timescale of galaxies with redshift, although to a lesser degree than predicted by galaxy evolution models. Instead, the measured molecular gas fraction as high as 6079% in MACSJ0032-arc favors the continued increase in the gas fraction of galaxies with redshift as expected, despite the plateau observed between z similar to 1.5 and z similar to 2.5.
|
14 |
The 12C/ 13C Ratio in Sgr B2(N): Constraints for Galactic Chemical Evolution and Isotopic ChemistryHalfen, D. T., Woolf, N. J., Ziurys, L. M. 22 August 2017 (has links)
A study has been conducted of 12C/13C ratios in five complex molecules in the Galactic center. H2CS, CH3CCH,
NH2CHO, CH2CHCN, and CH3CH2CN and their 13C-substituted species have been observed in numerous
transitions at 1, 2, and 3 mm, acquired in a spectral-line survey of Sgr B2(N), conducted with the telescopes of the
Arizona Radio Observatory (ARO). Between 22 and 54 individual, unblended lines for the 12C species and 2–54
for 13C-substituted analogs were modeled in a global radiative transfer analysis. All five molecules were found
to consistently exhibit two velocity components near VLSR ∼ 64 and 73 km s−1, with column densities ranging
from Ntot ∼ 3 × 1014 − 4 × 1017 cm−2 and ∼2 × 1013 − 1 × 1017 cm−2 for the 12C and 13C species, respectively.
Based on 14 different isotopic combinations, ratios were obtained in the range 12C/13C = 15 ± 5 to 33 ± 13, with
an average value of 24 ± 7, based on comparison of column densities. These measurements better anchor the 12C/13C ratio at the Galactic center, and suggest a slightly revised isotope gradient of 12C/13C = 5.21(0.52) DGC +
22.6(3.3). As indicated by the column densities, no preferential 13C enrichment was found on the differing carbon
sites of CH3CCH, CH2CHCN, and CH3CH2CN. Because of the elevated temperatures in Sgr B2(N), 13C isotopic
substitution is effectively “scrambled,” diminishing chemical fractionation effects. The resulting ratios thus reflect
stellar nucleosynthesis and Galactic chemical evolution, as is likely the case for most warm clouds.
|
15 |
Molecular gas during the post-starburst phase: low gas fractions in green-valley Seyfert post-starburst galaxiesYesuf, Hassen M., French, K. Decker, Faber, S. M., Koo, David C. 08 1900 (has links)
Post-starbursts (PSBs) are candidate for rapidly transitioning from starbursting to quiescent galaxies. We study the molecular gas evolution of PSBs at z similar to 0.03-0.2. We undertook new CO (2-1) observations of 22 Seyfert PSB candidates using the Arizona Radio Observatory Submillimeter Telescope. This sample complements previous samples of PSBs by including green-valley PSBs with Seyfert-like emission, allowing us to analyse for the first time the molecular gas properties of 116 PSBs with a variety of AGN properties. The distribution of molecular gas to stellar mass fractions in PSBs is significantly different from normal star-forming galaxies in the CO Legacy Database (COLD) GASS survey. The combined samples of PSBs with Seyfert-like emission line ratios have a gas fraction distribution that is even more significantly different and is broader (similar to 0.03-0.3). Most of them have lower gas fractions than normal star-forming galaxies. We find a highly significant correlation between the WISE 12 and 4.6 mu m flux ratios and molecular gas fractions in both PSBs and normal galaxies. We detect molecular gas in 27 per cent of our Seyfert PSBs. Taking into account the upper limits, the mean and the dispersion of the distribution of the gas fraction in our Seyfert PSB sample are much smaller (mu = 0.025, sigma = 0.018) than previous samples of Seyfert PSBs or PSBs in general (mu similar to 0.1-0.2, sigma similar to 0.1-0.2).
|
16 |
THE ARIZONA RADIO OBSERVATORY CO MAPPING SURVEY OF GALACTIC MOLECULAR CLOUDS. V. THE SH2-235 CLOUD IN CO J = 2 − 1, 13 CO J = 2 − 1, AND CO J = 3 − 2Bieging, John H., Patel, Saahil, Peters, William L., Toth, L. Viktor, Marton, Gábor, Zahorecz, Sarolta 26 September 2016 (has links)
We present the results of a program to map the Sh2-235 molecular cloud complex in the CO and (CO)-C-13 J = 2 - 1 transitions using the Heinrich Hertz Submillimeter Telescope. The map resolution is 38 '' (FWHM), with an rms noise of 0.12K brightness temperature, for a velocity resolution of 0.34 km s(-1). With the same telescope, we also mapped the CO J = 3 - 2 line at a frequency of 345 GHz, using a 64 beam focal plane array of heterodyne mixers, achieving a typical rms noise of 0.5 K brightness temperature with a velocity resolution of 0.23 km s(-1). The three spectral line data cubes are available for download. Much of the cloud appears to be slightly sub-thermally excited in the J = 3 level, except for in the vicinity of the warmest and highest column density areas, which are currently forming stars. Using the CO and (CO)-C-13. J = 2 - 1 lines, we employ an LTE model to derive the gas column density over the entire mapped region. Examining a 125 pc(2). region centered on the most active star formation in the vicinity of Sh2-235, we find that the young stellar object surface density scales as approximately the 1.6-power of the gas column density. The area distribution function of the gas is a steeply declining exponential function of gas column density. Comparison of the morphology of ionized and molecular gas suggests that the cloud is being substantially disrupted by expansion of the H II regions, which may be triggering current star formation.
|
17 |
Star formation in LITTLE THINGS dwarf galaxiesFicut-Vicas, Dana January 2015 (has links)
In this thesis we test and expand our current knowledge of Star Formation Laws (SF laws) in the extreme environment of dwarf irregular galaxies. We focus on the SF characteristics of our 18 galaxies sample, extending current investigations of the Schmidt-Kennicutt law to the low luminosity, low metallicity regime. The Hi data used in this project have been observed, calibrated and imaged according to the LITTLE THINGS Survey prescription to which I brought my own contribution as a member of the team. Apart from high resolution, VLA data in B, C and D array configurations, this project makes use of an extensive set of multi- wavelength data (H , FUV, 24 m, 3.6 m, V-band and K-band). Molecular gas in dwarfs is very difficult to observe, mainly because due to the low metallicity environment, we lose our only molecular tracer, the CO which becomes under luminous. Therefore the gas distribution is represented by Hi gas only. We create our Star Formation Rate (SFR) maps mainly based on FUV maps because our analysis shows that FUV is the SF tracer that allows us the most extensive sampling of the SFR surface density (SFRD) and Hi surface density relation. The main results of our study are: Whereas in spiral galaxies Bigiel et al. (2008) have found a one to one relation between star formation rate and molecular gas and no relation between the SFR and the neutral gas, in a small sample of dwarfs as well as in the outskirts of spiral galaxies Bigiel et al. (2010b) has found that SFRD does correlate with Hi surface density. We confirm the existence of the SFRD vs. Hi surface density relation in dwarf irregular galaxies and a linear fitting through all our data (all 18 galaxies combined) yields a power law relation ΣSFR ∝ Σ1.87±0.3/HI . We find that the interiors of Hi shells, at 400 pc scales, become resolved and show up in SFRD versus Hi surface density plots although within the shell interior we have SFRD values but no Hi surface density related to them. Thus, the points originating from those regions contribute significantly to the increase of the scatter in the plot. We show that by excluding those points the correlation between SFRD and Hi surface density improves between 10% and 20%. Eight of the 18 galaxies in our sample have Hi maxima higher than the 10M pc-2 value found by Bigiel et al. (2008) for spiral galaxies. Krumholz et al. (2011) predicted that the 10M pc-2 threshold is metallicity dependent in galaxies with sub-solar metallicity, however the theoretically predicted values for our galaxies only match the observed Hi maxima in one case (DDO168). We find that metallicity cannot be the only factor setting the Hi to H2 transition. In fact, we find evidence that the higher the interstellar radiation field (ISRF), the higher the Hi maximum is, hence we suggest that the ISRF should also be taken into consideration in predicting the Hi to H2 transition threshold. We find that even tighter than the SFRD vs. Hi surface density relation is the SFRD vs. V-band surface density relation. Unlike the SFRD vs. Hi surface density relation the SFRD vs. V-band surface density relation follows a power law and can be written as follows: ΣSFR ∝ (10^μv)^-0.43±0.03. The SFRD vs. V-band surface density relation suggests that the existing stars also play a role in the formation of the next generation of stars. Within our sample of dwarf galaxies the average pressure per resolution element and the SFRD are in a 1:1 linear relation: ΣSFR ∝ P_h^1.02±0.05. A similar relation has been found by Blitz & Rosolowsky (2006) for the low-pressure regimes of spiral galaxies. In conclusion we find that in the extreme environments of dwarf galaxies the metal deficiency and the lack of the classic SF stimulators (spiral arms, shear motions) do not impede the star forming process. In these galaxies, dust-shielding becomes predominantly self-shielding and there is plenty of Hi available to achieve this additional task. Existing stars assume the role of pressure enhancers, which in turn will stimulate SF without the need of spiral arms or shear motion.
|
18 |
Espectrometria de massa a temperaturas próximas a 0 K e simulações em mecânica molecular no estudo de espécies de interesse astrofísico e astroquímicoGoulart, Marcelo Moreira 24 October 2014 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-01-19T14:05:14Z
No. of bitstreams: 1
marcelomoreiragoulart.pdf: 10308658 bytes, checksum: f8584bc8a12f11d188a8cdb968acd85d (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-01-25T17:58:35Z (GMT) No. of bitstreams: 1
marcelomoreiragoulart.pdf: 10308658 bytes, checksum: f8584bc8a12f11d188a8cdb968acd85d (MD5) / Made available in DSpace on 2016-01-25T17:58:35Z (GMT). No. of bitstreams: 1
marcelomoreiragoulart.pdf: 10308658 bytes, checksum: f8584bc8a12f11d188a8cdb968acd85d (MD5)
Previous issue date: 2014-10-24 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Alcoóis e fulerenos estão entre as espécies atualmente observadas no meio interestelar (MI). Metanol é, dentre as espécies encontradas no espaço, uma das mais estudadas e sua importância como molécula orgânica é bem conhecida. A molécula de fulereno (carbono 60) pode ser responsável por carrear compostos entre diferentes regiões do espaço e pode, também, servir como matriz de reação para moléculas orgânicas tais como alcoóis. A investigação de possíveis reações químicas envolvendo diferentes compostos no MI pode auxiliar a compreensão a respeito da formação e transporte de moléculas no universo. Neste tese foram realizados experimentos nos quais aglomerados puros de metanol, etanol e também aglomerados de C60 dopados com estes alcoóis foram formados a partir da captura individual de moléculas por gotículas de He superfluido com temperatura isotérmica de 0,37 K atingida através de resfriamento evaporativo de átomos de Hélio (He). Após a captura os aglomerados foram ionizados por um feixe de elétrons de 70 eV e acelerados através de um conjunto de lentes eletrostáticas em direção a um analizador por tempo de vôo (TOF) onde o rendimento iônico foi obtido como função da razão massa sobre carga. Cálculos de mecânica molecular com a utilização do campo de forças MM2 e também simulações utilizando dinâmica molecular foram realizadas para interpretar os espectros obtidos. Nesta tese reportamos uma reação química ocorrendo no interior dos aglomerados após o processo de ionização, onde as moléculas de álcool sofrem desidratação, formando água (H2O), éteres dimetílico e dietílico e possivelmente eteno. Há evidências de que a reação é iniciada por um próton advindo da fragmentação de uma das moléculas alcoólicas devido ao processo de ionização. As moléculas de éter tendem a deixar o aglomerado após sua formação enquanto as moléculas de água permanecem no interior, solvatadas por alcoóis. Números mágicos são também observados nos espectros para diferentes números de moléculas de C60 e alcoóis. / Alcohols and fullerenes are among the species observed in the interstellar medium (ISM) to date. Methanol is one of the most studied molecules detected in space and its importance as an organic molecule is well known. The fullerene molecule (carbon 60) could be responsible for carrying compounds along different regions of space and could also serve as a reaction matrix for organic molecules such as alcohols. The investigation of the possible chemical reactions of different compounds in ISM could help to understand the formation and transport of molecules around the universe. In this thesis experiments were performed where pure methanol and etanol clusters as well as C60 clusters doped with those alcohols were formed upon pickup of individual molecules by superfluid He nanodroplets with an isothermic temperature of 0.37 K achieved by evaporative cooling of Helium (He) atoms. After pickup, the clusters were ionized by a 70 eV electron beam and then accelerated through a set of electrostatic lenses to a time-of-flight (TOF) analyzer, where the ion yield was recorded as a function of the mass to charge ratio. Molecular mechanics calculations with the MM2 force field as well as molecular dinamics simulations were performed to interpretate the spectra. Herein we report a chemical reaction occurring within the doped clusters upon ionization, where the alcohol molecules dehydrate forming water (H2O), dimethyl or diethyl ethers and also possibly ethene. There is evidence that the reaction is triggered by a proton coming from the fragmentation of one of the alcohol molecules due to the ionization process. The product ethers tend to leave the cluster after their formation while the H2O remains inside, solvated by alcohols. Magic numbers are also observed at the spectra for different number of C60 and alcohol molecules.
|
19 |
Radio astronomy techniques : the use of radio instruments from single dish radio telescopes to radio interferometersDe Witt, Aletha 03 1900 (has links)
New radio telescopes under development, will significantly enhance the capabilities
of radio astronomy in the Southern Hemisphere. South Africa, in
particular, is actively involved in the development of a new array (MeerKAT)
as well as in the expansion of existing very long baseline interferometer arrays
in the south. Participation in these new developments demands a thorough
understanding of radio astronomy techniques, and data analysis, and this
thesis focusses on two projects with the aim of gaining such experience.
The Southern Hemisphere very long baselines array is not well served
with calibrator sources and there are significant gaps in the present calibrator
distribution on the sky. An adequately dense, well distributed, set of strong,
compact calibrator or reference sources is needed. With this in mind, observations
using the Southern Hemisphere long baseline array were conducted to
investigate a sample of candidate calibrator sources. The compactness of the
sources was investigated and new potential calibrators have been identified.
Single antenna radio spectroscopy of OH masers has identified sources
of 1720 MHz emission associated with supernova remnants at the shock interface
between the expanding supernova remnant and a molecular cloud.
Models indicate that these masers are shock excited and can only be produced
under tight physical constraints. Out
ows from newly-formed stars
create nebulous regions known as Herbig-Haro objects when they interact
with the surrounding medium, and these regions are potentially similar to
those seen in supernova remnants. If conditions behind the shock fronts of
Herbig-Haro objects are able to support 1720-MHz OH masers they could
be a useful diagnostic tool for star formation. A survey toward Herbig-Haro
objects using a single-dish radio telescope did detect 1720-MHz OH lines in
emission, but neither their spectral signature nor follow-up observations with
the Very Large Array showed evidence of maser emission. / Mathematical Sciences / Ph.D. (Astronomy)
|
20 |
A submillimetre study of nearby star formation using molecular line dataDrabek-Maunder, Emily Rae January 2013 (has links)
This thesis primarily uses submillimetre molecular line data from HARP, a heterodyne array on the James Clerk Maxwell Telescope (JCMT), to further investigate star formation in the Ophiuchus L1688 cloud. HARP was used to observe CO J = 3-2 isotopologues: 12CO, 13CO and C18O; and the dense gas tracer HCO+ J = 4-3. A method for calculating molecular line contamination in the SCUBA-2 450 and 850 μm dust continuum data was developed, which can be used to convert 12CO J =6-5and J =3-2 maps of integrated intensity (K km s−1) to molecular line flux (mJy beam−1) contaminating the continuum emission. Using HARP maps of 12CO J = 3-2, I quantified the amount of molecular line contamination found in the SCUBA-2 850 μm maps of three different regions, including NGC 1333 of Perseus and NGC 2071 and NGC 2024 of Orion B. Regions with ‘significant’ (i.e. > 20%) molecular line contamination correspond to molecular outflows. This method is now being used to remove molecular line contamination from regions with both SCUBA-2 dust continuum and HARP 12CO map coverage in the Gould Belt Legacy Survey (GBS). The Ophiuchus L1688 cloud was observed in all three CO J = 3-2 isotopologues. I carried out a molecular outflow analysis in the region on a list of 30 sources from the Spitzer ‘c2d’ survey [Evans et al., 2009]. Out of the 30 sources, 8 had confirmed bipolar outflows, 20 sources had ‘confused’ outflow detections and 2 sources did not have outflow detections. The Ophiuchus cloud was found to be gravitationally bound with the turbulent kinetic energy a factor of 7 lower than the gravitational binding energy. The high-velocity outflowing gas was found to be only 21% of the turbulence in the cloud, suggesting outflows are significant but not the dominant source of turbulence in the region. Other factors were found to influence the global high-velocity outflowing gas in addition to molecular outflows, including hot dust from nearby B-type stars, outflow remnants from less embedded sources and stellar winds from the Upper Scorpius OB association. To trace high density gas in the Ophiuchus L1688 cloud, HCO+ J = 4-3 was observed to further investigate the relationship between high column density and high density in the molecular cloud. Non-LTE codes RADEX and TORUS were used to develop density models corresponding to the HCO+ emission. The models involved both constant density and peaked density profiles. RADEX [van der Tak et al., 2007] models used a constant density model along the line-of-sight and indicated the HCO+ traced densities that were predominantly subthermally excited with den- sities ranging from 10^3–10^5 cm^−3. Line-of-sight estimates ranged from several parsecs to 90 pc, which was unrealistic for the Ophiuchus cloud. This lead to the implementation of peaked density profiles using the TORUS non-LTE radiative transfer code. Initial models used a ‘triangle’ density profile and a more complicated log-normal density probability density function (PDF) profile was subsequently implemented. Peaked density models were relatively successful at fitting the HCO+ data. Triangle models had density fits ranging from 0.2–2.0×10^6 cm^−3 and 0.1–0.3×10^6 cm^−3 for the 0.2 and 0.3 pc cloud length models re- spectively. Log-normal density models with constant-σ had peak density ranges from 0.2–1.0 ×10^5 cm^−3 and 0.6–2.0×10^5 cm^−3 for 0.2 and 0.3 pc models respectively. Similarly, log-normal models with varying-σ had lower and upper density limits corresponding to the range of FWHM velocities. Densities (lower and upper limits) ranged from 0.1–1.0 ×10^6 and 0.5–3.0 ×10^5 cm^-3 for the 0.2 and 0.3 pc models respectively. The result of the HCO+ density modelling indicated the distributions of starless, prestellar and protostellar cores do not have a preference for higher densities with respect to the rest of the cloud. This is contrary to past research suggesting the probability of finding a submillimetre core steeply rises as a function of column density (i.e. density; Belloche et al. 2011; Hatchell et al. 2005). Since the majority of sources are less embedded (i.e Class II/III), it is possible the evolutionary state of Ophiuchus is the main reason the small sample of Class 0/I protostars do not appear to have a preference for higher densities in the cloud.
|
Page generated in 0.0365 seconds