Spelling suggestions: "subject:"ece"" "subject:"tece""
171 |
Passive microwave mapping of ice thickness /Apinis, John Janis January 1976 (has links)
No description available.
|
172 |
Meltwater storage in a temperate glacier /Larson, Grahame Jeffrey January 1976 (has links)
No description available.
|
173 |
Observations and model calculations of ice crystal growthStrapp, J. Walter. January 1977 (has links)
Note:
|
174 |
Variations in atmospheric ice nucleus concentrations.Isaac, George A. January 1968 (has links)
No description available.
|
175 |
Heat exchange and sea ice growth in Arctic Canada.Leahey, D. M. January 1966 (has links)
No description available.
|
176 |
Empirical Analysis of Pneumatic Tire Friction on IceHolley, Troy Nigel 13 December 2010 (has links)
Pneumatic tire friction on ice is an under-researched area of tire mechanics. This study covers the design and analysis of a series of pneumatic tire tests on a flat-level ice road surface. The terramechanics rig of the Advanced Vehicle Dynamics Lab (AVDL) is a single-wheel test rig that allows for the experimental analysis of the forces and moments on a tire, providing directly the data for the drawbar pull of said tire, thus supporting the calculation of friction based on this data. This indoor testing apparatus allows for some degree of replication by helping to maintain test conditions and by imposing a desired tire slip; the normal load, camber angle, toe angle, and other testing configurations can also be pre-set, as required. Methods of and issues related to controlling the production of ice and maintaining the conditions of numerous factors for each trial run were also documented.
The AVDL terramechanics rig allowed for the collection of data from tests that varied the tire tread, tire inflation pressure, normal load on the wheel, and the slip ratio of the moving tire. This empirical data was then analyzed through the statistical analysis program JMP 8 in order to determine which factors (or combination of factors) significantly influence pneumatic tire friction on ice. The analysis verified that the slip ratio had a significant effect on the observed coefficient of friction, which decreased as the slip ratio increased. The combinations of the slip ratio and inflation pressure and the slip ratio and tire setup also had a significant effect on the observed coefficient of friction. The tests appear to have validated the theory that the drawbar pull and the traction was higher for the tire with tread. / Master of Science
|
177 |
The role of subsurface dynamics in cometary outburstsSohani, Ahmad 10 May 2024 (has links) (PDF)
Comets, often referred to as cosmic time capsules, serve as invaluable repositories of information from the nascent phases of our solar system. Varying significantly in size, with nuclei ranging from a few kilometers to tens of kilometers in diameter, these celestial bodies are complex, porous aggregates of organic molecules, silicate particles, and entrapped volatile gases. Their orbits, which can be categorized into the Main Belt, the Kuiper Belt, and the Oort Cloud, offer distinct insights into their origins and the early conditions of the solar system. Understanding the physical processes occurring within these nuclei is critical, particularly in the context of comet outbursts—sudden increases in brightness accompanied by the release of gas and dust. These outbursts are the consequence of intricate internal mechanisms triggered when the comet approaches the Sun, leading to the sublimation of ice and subsequent gas production. Existing theories attribute outbursts to a buildup of internal stress, often facilitated by thermodynamic factors, such as temperature and pressure gradients, or mechanical factors, such as changes in angular momentum. However, one of the least understood aspects of these celestial bodies is the interaction of heat energy with their porous structure. This study aims to shed light on this very phenomenon, focusing on how heat energy from the Sun penetrates the surface of the comet and diffuses into its sub-layers, subsequently impacting phase transitions, gas production, and ultimately, the formation of outbursts. To accomplish this, we employ a multidisciplinary approach that combines thermodynamics, heat transfer equations, and computational modeling. We introduce a novel pore network model based on percolation theory to simulate the behavior of gas within the comet’s porous structure, allowing us to probe the intricate dynamics of gas movement and pressure build-up. Our work is validated against observational data, specifically from the European Space Agency’s Rosetta mission to Comet 67P/Churyumov-Gerasimenko. Our models have yielded preliminary results that emphasize the role of the formation of a first cluster in the porous network as a critical point for outburst occurrence. Particularly for comets approaching the perihelion position, the internal pressure and temperature dynamics become increasingly complex, and our findings contribute to a nuanced understanding of these dynamics. These insights not only advance our understanding of the comet nucleus but also offer a robust theoretical framework for investigating similar phenomena in other celestial bodies.
|
178 |
The growth and morphology of small ice crystals in a diffusion chamberRitter, Georg January 2015 (has links)
Small water ice crystals are the main component of cold tropospheric clouds such as cirrus. Because these clouds cover large areas of our planet, their role in the radiation budget of incoming and outgoing radiation to the planet's surface is important. At present, the representation of these clouds in climate and weather models is subject to improvements: a large part of the uncertainty error stems from the lack of precise micro-physical and radiation model schemes for ice crystal clouds. To improve the cloud representations, a better understanding of the life time dynamics of the clouds and their composition is necessary, comprising a detailed understanding of the ice particle genesis, and development over their lifetime. It is especially important to understand how the development of ice crystals over time is linked to the changes in observable variables such as water vapour content and temperature and how they change the light scattering properties of the crystals. Recent remote and aircraft based in-situ measurements have shown that many ice particles show a light scattering behaviour typical for crystals having rough surfaces or being of complex geometrical shapes. The aim of this thesis was to develop the experimental setup and experiments to investigate this further by studying the surface morphology of small water ice crystals using scanning electron microscopy (SEM). The experiments I developed study the growth of water ice crystals inside an SEM chamber under controlled environmental conditions. The influence of water vapour supersaturation, pressure and temperature is investigated. I demonstrate how to retrieve the surface topology from observed crystals for use as input to computational light scattering codes to derive light scattering phase functions and asymmetry parameters, which can be used as input into atmospheric models. Difficulties with the method for studying the growth of water ice crystals, such as the effect of the electron beam-gas ionization and charging effects, the problem of facilitating repeated and localized ice growth, and the effect of radiative influences on the crystal growth are discussed. A broad set of nucleation target materials is studied. In a conclusion, I demonstrate that the method is suitable to study the surface morphologies, but is experimentally very challenging and many precautions must be taken, such as imaging only once and preventing radiative heat exchange between the chamber walls and the crystals to avoid unwanted effects on the crystal morphology. It is also left as a question if a laboratory experiment, where crystals will need to be grown in connection to a substrate, can represent the real world well enough. Deriving the required light scattering data in-situ might be an alternative, easier way to collect data for modelling use.
|
179 |
Palaeo-ice streams in the north-eastern Laurentide Ice SheetDe Angelis, Hernán January 2007 (has links)
<p>This thesis presents a palaeoglaciological study aimed to determine the location, geometry and temporal evolution of palaeo-ice streams of the north-easternmost Laurentide Ice Sheet. The work was accomplished through the geomorphological interpretation of satellite imagery over 3.19 x 10<sup>6</sup> km<sup>2</sup> of the Canadian Arctic, using a glaciological inversion scheme. Ice streams were active in this region during most of the time between the Last Glacial Maximum and the last deglaciation. A web of ice streams and inter-ice stream areas existed. Three major ice stream networks are identified: the M'Clintock Channel, Gulf of Boothia – Lancaster Sound and Hudson Strait. The M'Clintock Channel bears the most complex landform record, comprising three generations of palaeo-ice streams. Their location was weakly controlled by the subglacial topography and their geometry was determined by frozen-bed portions of the ice sheet, thus providing evidence for pure ice streams in the Laurentide Ice Sheet. In contrast, the more pronounced relief of the Gulf of Boothia – Lancaster Sound corridor supported topographically controlled ice streams. The landform record on emerged land along Hudson Strait is insufficient to support the existence of ice streams. It is therefore proposed that ice streams were constrained within the deep parts of the strait while flanked by cold-based zones on the margins. Small transient ice streams on Baffin and Prince of Wales islands drained local remnant ice caps during the collapse of the ice sheet. Analysis of the controls on the location and flow of palaeo-ice streams suggests that the interaction between the subglacial topography and thermal state of the substrate plays a more fundamental role than the geology. It is concluded that the behaviour of ice streams cannot be explained in terms of environmental controls alone, but the complex dynamics of ice stream shear margins and onset zones must be considered.</p>
|
180 |
Palaeo-ice streams in the north-eastern Laurentide Ice SheetDe Angelis, Hernán January 2007 (has links)
This thesis presents a palaeoglaciological study aimed to determine the location, geometry and temporal evolution of palaeo-ice streams of the north-easternmost Laurentide Ice Sheet. The work was accomplished through the geomorphological interpretation of satellite imagery over 3.19 x 106 km2 of the Canadian Arctic, using a glaciological inversion scheme. Ice streams were active in this region during most of the time between the Last Glacial Maximum and the last deglaciation. A web of ice streams and inter-ice stream areas existed. Three major ice stream networks are identified: the M'Clintock Channel, Gulf of Boothia – Lancaster Sound and Hudson Strait. The M'Clintock Channel bears the most complex landform record, comprising three generations of palaeo-ice streams. Their location was weakly controlled by the subglacial topography and their geometry was determined by frozen-bed portions of the ice sheet, thus providing evidence for pure ice streams in the Laurentide Ice Sheet. In contrast, the more pronounced relief of the Gulf of Boothia – Lancaster Sound corridor supported topographically controlled ice streams. The landform record on emerged land along Hudson Strait is insufficient to support the existence of ice streams. It is therefore proposed that ice streams were constrained within the deep parts of the strait while flanked by cold-based zones on the margins. Small transient ice streams on Baffin and Prince of Wales islands drained local remnant ice caps during the collapse of the ice sheet. Analysis of the controls on the location and flow of palaeo-ice streams suggests that the interaction between the subglacial topography and thermal state of the substrate plays a more fundamental role than the geology. It is concluded that the behaviour of ice streams cannot be explained in terms of environmental controls alone, but the complex dynamics of ice stream shear margins and onset zones must be considered.
|
Page generated in 0.049 seconds