• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimal Operation of Climate Control Systems of Indoor Ice Rinks

Jain, Rupali January 2012 (has links)
The electric power sector is undergoing significant changes with the development of Smart Grid technologies and is rapidly influencing the way we consume energy. Demand Response (DR) is an important element in the emerging smart grid paradigm and is paving way for the more sophisticated implementation of Energy Hub Management Systems (EHMSs). Utilities are looking at Demand Side Management (DSM) and DR services that allow customers to make informed decisions regarding their energy consumption which in return, can help the energy providers to reduce their peak demand and hence enhance grid sustainability. Ice rinks are large commercial buildings which facilitate various activities such as hockey, figure skating, curling, recreational skating, public arenas, auditoriums and coliseums. These have a complex energy system; in which an enormous sheet of ice is maintained at a low temperature while at the same time the spectator stands are heated to ensure comfortable conditions for the spectators. Since indoor ice rinks account for a significant share of the commercial sector and are in operation for more than 8 months a year, their contribution in the total demand cannot be ignored. There is significant scope for energy savings in indoor ice rinks through optimal operation of their climate control systems. In this work, a mathematical model of indoor ice rinks for the implementation of EHMS is developed. The model incorporates weather forecast, electricity price information and end-user preferences as inputs and the objective is to shift the operation of climate control devices to the low electricity price periods, satisfying their operational constraints while having minimum impact on spectator comfort. The inside temperature and humidity dynamics of the spectator area are modeled to reduce total electrical energy costs while capturing the effect of climate control systems including radiant heating system, ventilation system and dehumidification system. Two different pricing schemes, Real Time Pricing (RTP) and Time-of-Use (TOU), are used to assess the model, and the resulting energy costs savings are compared. The expected energy cost savings are evaluated for a 8 month period of operation of the rink incorporating the uncertainties in electricity price, weather conditions and spectator schedules through Monte Carlo simulations. The proposed work can be implemented as a supervisory control in existing climate controllers of indoor ice rinks and would play a significant role in the enforcement of EHMS in Smart Grids.
2

Optimal Operation of Climate Control Systems of Indoor Ice Rinks

Jain, Rupali January 2012 (has links)
The electric power sector is undergoing significant changes with the development of Smart Grid technologies and is rapidly influencing the way we consume energy. Demand Response (DR) is an important element in the emerging smart grid paradigm and is paving way for the more sophisticated implementation of Energy Hub Management Systems (EHMSs). Utilities are looking at Demand Side Management (DSM) and DR services that allow customers to make informed decisions regarding their energy consumption which in return, can help the energy providers to reduce their peak demand and hence enhance grid sustainability. Ice rinks are large commercial buildings which facilitate various activities such as hockey, figure skating, curling, recreational skating, public arenas, auditoriums and coliseums. These have a complex energy system; in which an enormous sheet of ice is maintained at a low temperature while at the same time the spectator stands are heated to ensure comfortable conditions for the spectators. Since indoor ice rinks account for a significant share of the commercial sector and are in operation for more than 8 months a year, their contribution in the total demand cannot be ignored. There is significant scope for energy savings in indoor ice rinks through optimal operation of their climate control systems. In this work, a mathematical model of indoor ice rinks for the implementation of EHMS is developed. The model incorporates weather forecast, electricity price information and end-user preferences as inputs and the objective is to shift the operation of climate control devices to the low electricity price periods, satisfying their operational constraints while having minimum impact on spectator comfort. The inside temperature and humidity dynamics of the spectator area are modeled to reduce total electrical energy costs while capturing the effect of climate control systems including radiant heating system, ventilation system and dehumidification system. Two different pricing schemes, Real Time Pricing (RTP) and Time-of-Use (TOU), are used to assess the model, and the resulting energy costs savings are compared. The expected energy cost savings are evaluated for a 8 month period of operation of the rink incorporating the uncertainties in electricity price, weather conditions and spectator schedules through Monte Carlo simulations. The proposed work can be implemented as a supervisory control in existing climate controllers of indoor ice rinks and would play a significant role in the enforcement of EHMS in Smart Grids.
3

Comparative Analysis of Modern Energy Systems for Ice Rinks

Hemati, Pendar January 2023 (has links)
Ice rinks are highly energy-intensive commercial buildings with an average annual energy consumption of 1,000 MWh, most of it being used to cover the simultaneous heating and cooling demands. The aim of this thesis is to find the most energy efficient energy system for ice rinks by evaluating different system modifications and refrigerants. A comparative analysis of ammonia, CO2 and propane energy systems based on a representative ice rink for northern climates has been conducted. A traditional integrated ammonia ice rink consumes about 340 MWh per year to cover the thermal demands. The most promising energy efficiency measures for ammonia are using aqua ammonia as the secondary fluid and using an auxiliary heat pump to aid with covering heating demands. Thanks to these measures, energy savings of 12.9% can be achieved. A state-of-the-art trans-critical CO2 system using parallel compression consumes approximately 42.6% less energy than a conventional ammonia system, making it the most energy efficient solution for ice rinks with an SPF of 7.5. The good performance is largely linked to the possibility of operating CO2systems as direct systems, eliminating the need for indirect heat transfer and minimizing auxiliary equipment energy consumption. Propane, which has not been investigated as a refrigerant in ice rinks yet, was evaluated and compared against ammonia and CO2. A modern integrated propane system using parallel compression and an auxiliary heat pump is more energy efficient than a traditional ammonia system but requires more energy than modern ammonia or CO2 systems. Propane proved to be feasible and represents a potential alternative solution in ice rinks. Waste heat recovery is beneficial in every system and should be a key feature in ice rink energy systems. All systems use environmentally friendly refrigerants and their environmental impact is almost exclusively indirect and caused by electricity consumption. / Las pistas de hielo son edificios comerciales que consumen mucha energía, con un consumo medio anual de 1,000 MWh, la mayor parte de la cual se utiliza para cubrir las demandas simultáneas de calefacción y refrigeración. El objetivo de esta tesis es encontrar el sistema energético más eficiente para las pistas de hielo evaluando diferentes modificaciones del sistema y refrigerantes. Se ha realizado un análisis comparativo de los sistemas energéticos de amoníaco, CO2 y propano basado en una pista de hielo representativa de los climas nórdicos. Una pista de hielo de amoníaco integrada tradicional consume unos 340 MWh al año para cubrir las demandas térmicas. Las medidas de eficiencia energética más prometedoras para el amoníaco son el uso de aqua amoníaco como fluido secundario y la utilización de una bomba de calor auxiliar para ayudar a cubrir las demandas de calefacción. Gracias a estas medidas, se puede conseguir un ahorro energético del 12.9%. Un sistema de CO2 transcrítico de última generación que utiliza compresión paralela consume aproximadamente un 42.6% menos de energía que un sistema de amoníaco convencional, lo que lo convierte en la solución más eficiente desde el punto de vista energético para pistas de hielo con un SPF de 7.5. El buen rendimiento está ligado en gran medida a la posibilidad de operar los sistemas de CO2 como sistemas directos, eliminando la necesidad de transferencia indirecta de calor y minimizando el consumo de energía de los equipos auxiliares. El propano, que aún no se ha investigado como refrigerante en pistas de hielo, se evaluó y comparó con el amoníaco y el CO2. Un sistema moderno integrado de propano que utiliza compresión paralela y una bomba de calor auxiliar es más eficiente energéticamente que un sistema tradicional de amoníaco, pero requiere más energía que los sistemas modernos de amoníaco o CO2. El propano demostró ser viable y representa una posible solución alternativa en las pistas de hielo. La recuperación del calor residual es beneficiosa en todos los sistemas y debería ser una característica clave en los sistemas energéticos de las pistas de hielo. Todos los sistemas utilizan refrigerantes respetuosos con el medio ambiente y su impacto ambiental es casi exclusivamente indirecto y causado por el consumo de electricidad.
4

Geothermal function integration in ice rinks with CO2 refrigeration system

Pomerancevs, Juris January 2019 (has links)
Ice rinks are energy intense industrial applications. A typical single sheet ice rink in Sweden uses about 1000 MWh/season. A state-of-the art ice rink systems can use less than 500 MWh/season, indicating the potential for improvements. According to several investigations CO2 refrigeration system with heat recovery has proven to be energy-efficient and cost-effective solution in ice rinks.To further improve the efficiency, geothermal function may be added feature. The objective of this study is to evaluate the geothermal function from techno-economic perspective for a typical ice rink in Sweden. Modelling of several scenarios has been performed. Obtained results suggest that CO2 refrigeration system with 2-stage heat recovery, if upgraded with geothermal function, can save between 1.7 to 6.8% of energy annually. In the best case, this study suggests the geothermal function would pay back in 16.4 years. / Ishallar är energikrävande industriella applikationer. En typisk ishall i Sverige använder cirka 1000 MWh / säsong. Ett toppmodernt ishallsystem kan använda mindre än 500 MWh / säsong, vilket indikerar stora förbättringsmöjligheter. Enligt flera undersökningar har CO2-kylsystem med värmeåtervinning visat sig vara energieffektivt och kostnadseffektivt i ishallar.För att ytterligare förbättra effektiviteten kan geotermisk funktion läggas till. Syftet med denna studie är att utvärdera den geotermiska funktionen ur ett tekno-ekonomiskt perspektiv för en typisk ishall i Sverige. En modellering av flera scenarier har utförts. Resultaten antyder att CO2-kylsystem med 2-steg värmeåtervinning, om det uppgraderas med geotermisk funktion, kan spara mellan 1,7 och 6,8% energi årligen. I bästa fall antyder denna studie att den geotermiska funktionen skulle betala tillbaka om 16,4 år.
5

Evaluation of CO2 Ice rink heat recovery system performance

Thanasoulas, Sotirios January 2018 (has links)
Ice rinks are the largest energy consumers in terms of public buildings due to their simultaneous need of cooling, heating, ventilation, and lighting for different parts of the building which means that these facilities also have a lot of potential for energy saving. Due to the size of the cooling unit in an ice rink the refrigerant charge can become quite high, which potentially has a big impact on the environment. CO2 refrigeration units could cover all these challenges that are linked to ice rink operation. CO2 as a refrigerant has a very low impact on the environment and at the same time it could provide enough energy to cover the heating demands of an ice rink. CO2-based systems should operate in trans-critical mode which affects the performance of the refrigeration system, but by using the released heat that otherwise would be rejected to the ambience the total energy consumption becomes lower. The process of heat recovery is therefore vital for an efficient system. The refrigeration unit can produce enough energy to cover all the heating demands of an ice rink, but only when the heat recovery is controlled properly. The energy recovery method is very important, but it should also be tailored in order to cover all demands. This is because all the subsystems, i.e. demands, have different temperature and load requirements. The energy could be recovered in one or two stages from the refrigeration system. However, hardware is not enough in order to achieve proper operation, the system should also operate in the best conditions (discharge pressure and subcooling) in order to be efficient. The more proper operation, the less energy consumption.  This energy recovery method could also be used as subcooling in climates where the ambient temperature is very high, making CO2 a very efficient solution. Regular refrigerants are still often used in warm countries despite their high environmental impact. A refrigeration system using natural refrigerants and more specific CO2 does not have constraints, however. The only limitation is the wrong operation. / Isrinkar är de största energikonsumenterna när det gäller offentliga byggnader på grund av deras ständiga behov av nedkylning, uppvärmning, ventilation och belysning. Detta innebär också att anläggningarna har en stor potential att effektivisera sin energibesparing. Isrinkar konsumerar stora mängder kylmedel på grund av deras storlekar, vilket potentiellt har en stor negativ inverkan på miljön. CO2 kylenheter skulle kunna klara av alla dessa utmaningar som är kopplade till isrinkens drift. Att använda CO2 som en kylarvätska har en ytterst liten inverkan på miljön och kan dessutom bidra med tillräckligt mycket energi för att täcka uppvärmningsbehovet för en isrink. CO2 baserade system bör köras i ett transkritiskt läge vilket påverkar kylsystemets prestanda, men genom att återanvända den utsläppta värmen som annars skulle gå förlorad till omgivningen så blir den totala energiförbrukningen lägre. Värmeåtervinningsprocessen  är därför avgörande för ett effektivt energisystem. Kylaggregatet kan producera tillräckligt med energi för att täcka alla värmebehov för en isrink, men endast när värmeåtervinningen behärskas ordentligt. Energiåtervinningsmetoden är också väldigt viktig, men den bör skräddarsys för att täcka alla krav. Detta beror på att alla delsystem, dvs krav, har olika temperatur- och belastningskrav. Energin kan återvinnas i ett eller två stadier från kylsystemet. Tyvärr så räcker dock inte hårdvaran till för att uppnå en önskad drift, men systemet bör även fungera under de bästa förutsättningarna (utloppstryck och underkylning) för att vara effektiv. Ju bättre drift, desto mindre är energiförbrukningen. Denna energiåtervinningsmetod kan också användas som underkylning i varma klimat vilket gör CO2 till en mycket effektiv lösning. Vanliga typer av kylmedel används fortfarande ofta i varma länder trots att deras negativa miljöpåverkan. Ett kylsystem med ett naturligt kylmedel som till exempel koldioxid har emellertid inga begränsningar. Den enda begränsningen är den felaktiga hanteringen av driften.

Page generated in 1.2801 seconds