Spelling suggestions: "subject:"recuperación dde valor"" "subject:"recuperación dee valor""
1 |
Comparative Analysis of Modern Energy Systems for Ice RinksHemati, Pendar January 2023 (has links)
Ice rinks are highly energy-intensive commercial buildings with an average annual energy consumption of 1,000 MWh, most of it being used to cover the simultaneous heating and cooling demands. The aim of this thesis is to find the most energy efficient energy system for ice rinks by evaluating different system modifications and refrigerants. A comparative analysis of ammonia, CO2 and propane energy systems based on a representative ice rink for northern climates has been conducted. A traditional integrated ammonia ice rink consumes about 340 MWh per year to cover the thermal demands. The most promising energy efficiency measures for ammonia are using aqua ammonia as the secondary fluid and using an auxiliary heat pump to aid with covering heating demands. Thanks to these measures, energy savings of 12.9% can be achieved. A state-of-the-art trans-critical CO2 system using parallel compression consumes approximately 42.6% less energy than a conventional ammonia system, making it the most energy efficient solution for ice rinks with an SPF of 7.5. The good performance is largely linked to the possibility of operating CO2systems as direct systems, eliminating the need for indirect heat transfer and minimizing auxiliary equipment energy consumption. Propane, which has not been investigated as a refrigerant in ice rinks yet, was evaluated and compared against ammonia and CO2. A modern integrated propane system using parallel compression and an auxiliary heat pump is more energy efficient than a traditional ammonia system but requires more energy than modern ammonia or CO2 systems. Propane proved to be feasible and represents a potential alternative solution in ice rinks. Waste heat recovery is beneficial in every system and should be a key feature in ice rink energy systems. All systems use environmentally friendly refrigerants and their environmental impact is almost exclusively indirect and caused by electricity consumption. / Las pistas de hielo son edificios comerciales que consumen mucha energía, con un consumo medio anual de 1,000 MWh, la mayor parte de la cual se utiliza para cubrir las demandas simultáneas de calefacción y refrigeración. El objetivo de esta tesis es encontrar el sistema energético más eficiente para las pistas de hielo evaluando diferentes modificaciones del sistema y refrigerantes. Se ha realizado un análisis comparativo de los sistemas energéticos de amoníaco, CO2 y propano basado en una pista de hielo representativa de los climas nórdicos. Una pista de hielo de amoníaco integrada tradicional consume unos 340 MWh al año para cubrir las demandas térmicas. Las medidas de eficiencia energética más prometedoras para el amoníaco son el uso de aqua amoníaco como fluido secundario y la utilización de una bomba de calor auxiliar para ayudar a cubrir las demandas de calefacción. Gracias a estas medidas, se puede conseguir un ahorro energético del 12.9%. Un sistema de CO2 transcrítico de última generación que utiliza compresión paralela consume aproximadamente un 42.6% menos de energía que un sistema de amoníaco convencional, lo que lo convierte en la solución más eficiente desde el punto de vista energético para pistas de hielo con un SPF de 7.5. El buen rendimiento está ligado en gran medida a la posibilidad de operar los sistemas de CO2 como sistemas directos, eliminando la necesidad de transferencia indirecta de calor y minimizando el consumo de energía de los equipos auxiliares. El propano, que aún no se ha investigado como refrigerante en pistas de hielo, se evaluó y comparó con el amoníaco y el CO2. Un sistema moderno integrado de propano que utiliza compresión paralela y una bomba de calor auxiliar es más eficiente energéticamente que un sistema tradicional de amoníaco, pero requiere más energía que los sistemas modernos de amoníaco o CO2. El propano demostró ser viable y representa una posible solución alternativa en las pistas de hielo. La recuperación del calor residual es beneficiosa en todos los sistemas y debería ser una característica clave en los sistemas energéticos de las pistas de hielo. Todos los sistemas utilizan refrigerantes respetuosos con el medio ambiente y su impacto ambiental es casi exclusivamente indirecto y causado por el consumo de electricidad.
|
2 |
Development and validation of a virtual engine model for simulating standard testing cyclesAuñón García, Ángel 05 July 2021 (has links)
[ES] Las nuevas regulaciones en materia de emisiones de efecto invernadero y calidad del aire han conducido la evolución tecnológica de los motores de combustión interna durante los últimos años. Las mejoras en el proceso de la combustión, la sobrealimentación, la gestión térmica, los sistemas de post tratamiento y técnicas como la recirculación de gases de escape, han permitido que los motores de combustión interna de hoy en día sean cada vez más limpios. La adopción en Europa del nuevo ciclo de homologación WLTP, que considera un ciclo de conducción más realista que su predecesor el NEDC, así como la necesidad de evaluar las emisiones contaminantes en diferentes escenarios de temperatura ambiente y de altitud, suponen un desafío para los fabricantes a la hora de diseñar y optimizar sus motores. En este contexto, el modelado unidimensional del motor ofrece la posibilidad de desarrollar y probar diferentes soluciones con la suficiente precisión,a la vez que permite agilizar el proceso de diseño del motor y reducir los costes de éste.
El objetivo de esta tesis es el de desarrollar un modelo completo de motor virtual que permita simular condiciones transitorias de régimen de giro y grado de carga, así como diferentes condiciones ambientales de presión y temperatura. Con este modelo de motor se pretende predecir las principales variables termo-fluidodinámicas en diferentes puntos del motor y las emisiones contaminantes liberadas en el escape.
Por otra parte, el arranque en frío y el funcionamiento a bajas temperaturas están asociados a un mayor consumo, mayores emisiones de hidrocarburos (HC) y monóxido de carbono (CO), así como mayores emisiones de óxidos de nitrógeno (NOx) debido a la desactivación de los sistemas de recirculación de gases de escape. Para paliar estos efectos adversos, una opción es lograr que el sistema de postratamiento alcance su temperatura de activación lo más pronto posible. En este trabajo se aborda este objetivo mediante dos soluciones. Por un lado, se ha explorado la posibilidad de elevar la temperatura de los gases en el escape mediante un sistema de distribución variable. Con este método se pueden reducir las emisiones de CO y HC en torno a un 40-50 % y las emisiones de NOx hasta un 15 % durante la primera fase del ciclo WLTC, a costa de una penalización en el consumo de combustible. Por otro lado, también se ha estudiado la posibilidad de aislar térmicamente el sistema de escape. En este caso, es posible reducir las emisiones de CO y HC en torno a un 30 % sin mejorar las de NOx. / [CA] Les noves regulacions en matèria d'emissions d'efecte d'hivernacle i qualitat de l'aire han conduït la evolució tecnològica dels motors de combustió interna durant els darrers anys. Les millores en el procés de la combustió, la sobrealimentació, la gestió tèrmica, els sistemes de postractament i tècniques com la recirculació de gasos d'escapament, han permès que els motors de combustió interna d'avui dia siguen cada vegada més nets. L'adopció a Europa del nou cicle d'homologació WLTP, que considera un cicle de conducció més realista que el seu predecessor el NEDC, així com la necessitat d'avaluar les emissions de gasos contaminants en diferents escenaris de temperatura ambient i humitat, suposen un repte per als fabricants a l'hora de dissenyar i optimitzar els seus motors. En aquest context, el modelatge unidimensional del motor ofereix la possibilitat de desenvolupar i provar diferents solucions amb la suficient precisió, al mateix temps que agilitza el procés de disseny del motor i reduïx els costos derivats d'aquest.
L'objectiu d'aquesta tesi és el de desenvolupar un model complete de motor virtual que permeta simular condicions transitòries de règim de gir i grau de càrrega, així com diferents condicions ambientals de pressió i temperatura. Amb aquest model de motor es pretén predir les principals variables termo-fluidodinàmiques en diferents punts del motor i les emissions contaminants alliberades en l'escapament.
Per altra banda, l'arrancada en fred i el funcionament a baixes temperatures están associats a un major consum, majors emissions d'hidrocarburs (HC) i monòxid de carboni (CO), així com majors emissions d'òxids de nitrògen (NOx) degudes a la desactivació dels sistemes de recirculació de gasos d'escapament. Per a pal·liar aquestos efectes indesitjats, una opció és aconseguir que el sistema de postractament arribe a la seua temperatura d'activació el més prompte possible. En aquest treball, aquest objectiu s'aborda mitjançant dues solucions. Per una banda, s'ha investigat la possibilitat d'augmentar la temperatura dels gasos en l'escapament per mitjà d'un sistema de distribució variable. Amb aquest mètode s'ha aconseguit reduïr les emissions de CO i HC al voltant d'un 40-50 % i les emissions de NOx fins a un 15 % durant la primera fase del cicle WLTC, acosta d'una penalització en el consum de combustible. Per altra banda, també s'ha estudiat la possibilitat d'aïllar tèrmicament el sistema d'escapament. En aquest cas, és possible reduir les emissions de CO i HC vora un 30 % sense millorar les de NOx . / [EN] The new regulations regarding greenhouse emissions and air quality have led the technological progress of the internal combustion engines during the recent years. Improvements in the combustion process, turbocharging, thermal management, after-treatment systems and techniques such as the exhaust gases recirculation, have resulted in cleaner internal combustion engines. The adoption of the new type approval test in Europe, so-called WLTP, which represents a more realistic driving cycle than its forerunner the NEDC, as well as the need to evaluate pollutant emissions at different conditions of ambient temperature and altitude, represent a challenge for manufacturers when it comes to design and optimise their engines. In this context, one-dimensional engine models offer the possibility to develop and test different solutions with enough accuracy, while hastening the engine design process and reducing its costs.
The main objective of this thesis is to develop a complete virtual engine model able to simulate transient conditions of engine speed and load, as well as different ambient conditions of pressure and temperature. The engine model is used to predict the main thermo-and fluid dynamic variables at different engine locations and the tailpipe pollutant emissions.
Furthermore, engine cold start and its operation at low temperature is associated to a greater fuel consumption, hydrocarbon (HC) and carbon monoxide (CO) emissions; as well as more nitrogen oxide (NOx) emissions due to the deactivation of the exhaust gases recirculation systems. A solution to mitigate these negative effects is to heat up the after-treatment system so as to achieve its activation temperature as soon as possible. In the work presented, this goal is addressed through two different standpoints. On the one hand, variable valve timing systems have been studied as a way to increase the exhaust gases temperature. With this option it is possible to reduce CO and HC emissions by 40-50 % and NOx emissions by 15 % during the first stage of the WLTC cycle, at the expense of a penalty in the fuel consumption. On the other hand, the thermal insulation of the exhaust system has also been studied with the same objective. In this case, it is possible to reduce CO and HC emissions by 30 %, while not improving NOx ones. / The author wishes to acknowledge the financial support received through the FPI S2 2018 1048 grant of Programa de Apoyo para la Investigación y Desarrollo (PAID) of Universitat Politècnica de València. / Auñón García, Á. (2021). Development and validation of a virtual engine model for simulating standard testing cycles [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/168906
|
Page generated in 0.0901 seconds