• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 80
  • 51
  • 32
  • 30
  • 29
  • 29
  • 27
  • 23
  • 16
  • 15
  • 15
  • 15
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

A Search for Solar Neutralino Dark Matter with the AMANDA-II Neutrino Telescope

Burgess, Thomas January 2008 (has links)
A relic density of Weakly Interacting Massive Particles (WIMPs) remaining from the Big Bang constitutes a promising solution to the Dark Matter problem. It is possible for such WIMPs to be trapped by and accumulate in gravitational potentials of massive dense objects such as the Sun. A perfect WIMP candidate appears in certain supersymmetric extensions to the Standard Model of particle physics, where the lightest supersymmetric particle is a neutralino which can be stable, massive and weakly interacting. The neutralinos may annihilate pair-wise and in these interactions neutrinos with energies ranging up to the neutralino mass can be indirectly produced. Hence, a possible population of dark matter neutralinos trapped in the Sun can give rise to an observable neutrino flux. The Antarctic Muon And Neutrino Detector Array, AMANDA, is a neutrino telescope that detects Cherenkov light emitted by charged particles created in neutrino interactions in the South Pole glacial ice sheet using an array of light detectors frozen into the deep ice. In this work data taken with the AMANDA-II detector during 2003 are analyzed to measure or put upper bounds on the flux of such neutrinos from the Sun. In the analysis detailed signal and background simulations are compared to measurements. Background rejection filters optimized for various neutralino models have been constructed. No excess above the background expected from neutrinos and muons created in cosmic ray interactions in the atmosphere was found. Instead 90% confidence upper limits have been set on the neutralino annihilation rate in the Sun and the muon flux induced by neutralino signal neutrinos.
52

An FPGA implementation of neutrino track detection for the IceCube telescope

Wernhoff, Carl January 2010 (has links)
The IceCube telescope is built within the ice at the geographical South Pole in the middle of the Antarctica continent. The purpose of the telescope is to detect muon neutrinos, the muon neutrino being an elementary particle with minuscule mass coming from space. The detector consists of some 5000 DOMs registering photon hits (light). A muon neutrino traveling through the detector might give rise to a track of photons making up a straight line, and by analyzing the hit output of the DOMs, looking for tracks, neutrinos and their direction can be detected. When processing the output, triggers are used. Triggers are calculation- efficient algorithms used to tell if the hits seem to make up a track - if that is the case, all hits are processed more carefully to find the direction and other properties of the track. The Track Engine is an additional trigger, specialized to trigger on low- energy events (few track hits), which are particularly difficult to detect. Low-energy events are of special interest in the search for Dark Matter. An algorithm for triggering on low-energy events has been suggested. Its main idea is to divide time in overlapping time windows, find all possible pairs of hits in each time window, calculate the spherical coordinates θ and ϕ of the position vectors of the hits of the pairs, histogram the angles, and look for peaks in the resulting 2d-histogram. Such peaks would indicate a straight line of hits, and, hence, a track. It is not believed that a software implementation of the algorithm would be fast enough. The Master's Thesis project has had the aim of developing an FPGA implementation of the algorithm. Such an FPGA implementation has been developed. Extensive tests on the design has yielded positive results showing that it is fully functional. The design can be synthesized to about 180 MHz, making it possible to handle an incoming hit rate of about 6 MHz, giving a margin of more than twice to the expected average hit rate of 2.6 MHz.
53

Dark Matter in the Galactic Halo : A Search Using Neutrino Induced Cascades in the DeepCore Extension of IceCube

Taavola, Henric January 2015 (has links)
A search for Weakly Interacting Massive Particles (WIMPs) annihilating in the dark matter halo of the Milky Way was performed, using data from the IceCube Neutrino Observatory and its low-energy extension DeepCore. The data were collected during one year between 2011 to 2012 corresponding to 329.1 days of detector livetime. If WIMPs in the dark matter halo undergo pairwise annihilation they may produce a neutrino signal detectable at the Earth. Assuming annihilation into bb, W+W-, τ+τ-, μ+μ-, νν and a neutrino flavor ratio of 1:1:1 at the detector, cascade events from all neutrino flavors were used to search for an excess of neutrinos matching a dark matter signal spectrum. Two dark matter density profiles for the halo were used; the cored Burkert profile and the cusped NFW profile. No excess of neutrinos from the Galactic halo was observed, and upper limits were set for the thermally averaged product of the WIMP self-annihilation cross section and velocity, <σAv>, in the WIMP mass range 30 GeV to 10 TeV. For the bb annihilation channel and the NFW halo profile, the 90% C.L. upper limits are 9.03×10-22 cm3 s-1 for the mass WIMP 100 GeV and 4.08×10-22 cm3 s-1 for the WIMP mass 3000 GeV. The corresponding upper limits for the μ+μ- annihilation channel are 4.40×10-23 cm3 s-1 and 3.20×10-23 cm3 s-1. / IceCube
54

Search for high energy GRB neutrinos in IceCube

Casey, James David 21 September 2015 (has links)
The IceCube Neutrino Observatory has reported the observation of 35 neutrino events above 30 TeV with evidence for an astrophysical neutrino flux using data collected from May 2010 to May 2013. These events provide the first high-energy astrophysical neutrino flux ever observed. The sources of these events are currently unknown. IceCube has looked for correlations between these events and a list of TeV photon sources including a catalog of 36 galactic sources and 42 extragalactic sources, correlations with the galactic plane and center, and spatial and temporal clustering. These searches have shown no significant correlations. The isotropic distribution of the event directions gives indications that the events could be extragalactic in nature and therefore may originate in the same processes that generate ultra-high-energy cosmic rays (UHECRs). The sources of these UHECRs are still unknown; however, gamma-ray bursts (GRBs) have been proposed as one possible source class. By determining the source of these high-energy neutrinos, it may be possible to determine the sources of UHECRs as well. This study is a search for directional and temporal correlation between 856 GRBs and the astrophysical neutrino flux observed by IceCube. Nearly 10,000 expanding time windows centered on the earliest reported time of the burst were examined. The time windows start at ±10 s and extend to ±15 days. We find no evidence of correlations for these time windows and set an upper limit on the fraction of the astrophysical flux that can be attributed to the observed GRBs as a function of the time window. GRBs can contribute at most 12% of the astrophysical neutrino flux if the neutrino-GRB correlation time is less than ≈20 hours, and no more than 38% of the astrophysical neutrino flux can be attributed to the known GRBs at time scales up to 15 days. We conclude that GRBs observable by satellites are not solely responsible for IceCube’s astrophysical neutrino flux, even if very long correlation time scales are assumed.
55

Time distribution analysis for flasher data and simulations in the IceCube neutrino detector

Sarah, Bouckoms January 2011 (has links)
The IceCube neutrino observatory is located in the deep glacial ice below the South Pole. IceCube consists of over 5, 000 photomultiplier tubes regularly spaced throughout a cubic kilometre volume of ice. The photomultiplier tubes are receptive to the light produced by high energy neutrino interactions. As a means of evaluating our understanding of the physics of light propagation, a comparison was made between the data taken from artificial light sources and Monte Carlo simulations of these events. The evaluation was done by comparing the shape of the light arrival-time distributions. The three icemodels compared were the Additionally Heterogeneous Absorption (AHA), South Pole Ice - 1 (Spice) and South Pole Ice - Mie (Spice Mie). The artificial light sources used are LEDs, known as flashers, located within each of the detector modules. The data set used in this study was taken on string 63 with single- photoelectron settings (one LED). Various orientations of the flashing LED and relative position of the light source in the detector, were studied over 15 depths in instrumented ice. Through a χ2 comparison and distribution characteristics it was found that for the majority of cases, simulations which used the Spice Mie ice model matched the data best. There were, however, some isolated cases in which simulations using the Spice 1 or AHA ice models matched the flasher data best.
56

On the Properties of Ice at the IceCube Neutrino Telescope

Whitehead, Samuel Robert January 2008 (has links)
The IceCube Neutrino Telescope is designed to detect high energy neutrinos with a large array of photomultiplier tubes placed deep within the Antarctic ice. The way that light propagates through the ice needs to be modelled accurately to enable the paths of charged particles to be reconstructed from the distribution of their Cerenkov radiation. Light travelling through even the purest of ice will undergo scattering and absorption processes, however the ice in which IceCube is embedded has optical properties that vary significantly with depth which need to be accurately modelled. Currently, simulation of the muon background using the current ice model is unable to fully replicate experimental data. In this thesis we investigate a potential method of improving on the current generation of ice models. We introduce thin, highly absorbing layers into the current description of the detection medium and investigate the effect on the simulation of muon tracks in IceCube. We find that better agreement between simulation and data can be seen in the occupancy of optical modules, through the introduction of such absorptive layers into the existing ice layers.
57

Searching for dark matter in the Galactic Halo with IceCube using high energy cascades

Flis, Samuel January 2017 (has links)
The presence of dark matter is inferred at scales ranging from rotations of galaxies to imprints in the CMB – the Big Bang after-glow. The nature of dark matter is, however, still unknown as no detection other than the gravitational one has been made. This thesis presents two analyses searching for a neutrino signal from dark matter annihilations in the Milky Way. The first analysis searched for an excess of νμ charged current events with directions from the central region of the dark matter halo and, was focused on low energy events, thus probing low dark matter particle masses. Approximately 319 days of data collected with the 79-string configuration of the IceCube detector was used in the analysis. Despite a large deficit in the number of observed events the data were found to be consistent with background and upper limits were set on <σⱴ>. At the time of the analysis these limits were the strongest set by a neutrino experiment below 100 GeV. The second analysis was performed on a data sample originally used in an unfolding analysis of the atmospheric and astrophysical neutrino spectra. The data consisted of contained cascade events above 1 TeV collected with the 79-string configuration and the completed detector in the 86-string configuration during two years of data-taking. The limits set by this analysis were more constraining by up to a factor of 10 compared to previous IceCube analyses, and the most competitive limits are set assuming a Burkert halo profile. These two analyses prompted the development of a signal subtraction likelihood method to address the problem of signal contamination in background estimates based on scrambled data. Additionally a study concerning future extensions of IceCube in the Gen2 project is presented. The cascade reconstruction performance was examined and compared for different proposed detector extensions.
58

Development of a single photon detector using wavelength-shifting and light-guiding technology

Hebecker, Dustin 27 August 2021 (has links)
Das IceCube Neutrino-Observatorium ist ein am geografischen Südpol im Eis installierter Neutrinodetektor. In IceCube werden Neutrinos mit Tscherenkow-Strahlung von Sekundärteilchen aus Neutrino Interaktionen detektiert. Für den Nachfolgedetektor IceCube-Gen2, werden neue und verbesserte Lichtdetektoren gesucht. Die vorliegende Arbeit beschreibt die Entwicklung eines dieser Lichtdetektoren. Dieser basiert auf Wellenlängen schiebenden und Licht leitenden Technologien. Der Detektor mit dem Namen "Wavelength-shifting Optical Module" (WOM) verwendet eine transparente Röhre, mit wellenlängenschiebender Farbe, als passiver Photonendetektor. Das in der Wellenlänge verschobene Licht wird durch Totalreflexion, zu kleinen PMTs an beiden Enden geleitet. Die Auswahl dieses Designs reduziert die Kosten und verbessert das Signal-Rausch-Verhältnis wesentlich, möglicherweise können mit dieser Lösung extragalaktische Supernova in zukünftigen Detektoren beobachtet werden. Als eine Kernkomponente wird die wellenlängenschiebende Röhre ausführlich untersucht. Verschiedene Messaufbauten und Auswertungsmethoden werden entwickelt, um diese im Anschluss zu untersuchen und zu bewerten. Iterative Verbesserungen der Materialien und des Farbauftrageverfahren als auch Messmethoden, resultieren in einer kombinierten Einfang-, Wellenlängenschiebe- und Transporteffizienz von 28,1 +/- 5,4 % der Röhre. Ein Model zur Beschreibung des Lichtverhaltens in der Röhre wird entwickelt um eine Diskrepanz zwischen Theorie und Messung zu untersuchen. Die Kombination zwischen Messung und Model, bestätigt die Aussagekraft des Models und zeigt, dass ein Großteil der Verluste beim Lichttransport zustande kommen. Darüber hinaus werden die physikalischen Eigenschaften des WOM in die IceCube Simulationsumgebung eingebaut. Der Vergleich zu einem Konkurrenzmodul zeigt eine Überlegenheit des WOM um den Faktor 1,05 +/- 0,07. Es werden Vorschläge und Ausblicke für Verbesserungen der Leistungsfähigkeit des WOMs gegeben. / The IceCube Neutrino Observatory is an in ice neutrino detector located at the geographic South Pole. In IceCube neutrinos are detected via Cherenkov light produced by secondary particles in neutrino interactions. For the upgraded detector IceCube-Gen2, new and improved light detectors are sought-after. This work describes the development of one of those light detectors based on a novel combination of wavelength-shifting and light-guiding technology. The detector named the Wavelength-shifting Optical Module (WOM) utilizes a large transparent tube, coated with wavelength-shifting paint as a passive photon detector. The wavelength-shifted light is guided via total internal reflection towards small active light detectors, at each end of the tube. This design reduces costs and improves the signal to noise ratio significantly, thereby potentially enabling extragalactic supernova detections in future detectors. As a core component, the wavelength-shifting tube is extensively investigated. Different measurement setups and evaluation techniques are developed and investigated. Iterative improvement of materials and coating techniques as well as measurement methods currently result in a combined photon capture, shift and transport efficiency of 28.1 +/- 5.4 % for the tube. Those results contrast the theoretical maximum of 74.5 %. A model is developed to describe the light propagation and loss processes in the tube and to understand the discrepancies between theory and measurement. The combination of the measurements with the model, validate the descriptive qualities of the model and show that most of the light is lost during the light propagation in the tube. Additionally, the physical properties of the WOM are included in the IceCube simulation framework. A comparison to a competing module showed that the WOM outperforms by a factor of 1.05 +/- 0.07 in photon detection numbers. Where applicable, suggestions and outlooks are given to enhance the performance of the WOM.
59

Indirect Searches for Galactic Dark Matter with IceCube-DeepCore and PINGU

Wolf, Martin January 2014 (has links)
The cubic-kilometer sized IceCube neutrino observatory is burieddeep in the glacial ice at the Earth’s South Pole. Its low-energyextension array DeepCore enables physicists to search indirectlyfor light Dark Matter (DM) particles with masses as low as tensof GeV/c2 situated within our home galaxy, the Milky Way. GeVneutrinos could be produced through DM particle annihilations,propagating to the Earth where they could be detected by IceCube. This licentiate thesis presents a search for Weakly Interacting Mas-sive Particles (WIMPs) with masses as low as 30 GeV/c2 in theGalactic center (GC) using the 79-string configuration of the IceCubeneutrino detector. Data from 319.7 live-days have been analyzedusing a cut-and-count analysis approach, and found to be consistentwith the background-only hypothesis with expected backgroundfrom atmospheric muons and neutrinos. Thus, upper limits wereset on the velocity averaged DM annihilation cross-section. The Precision IceCube Next Generation Upgrade (PINGU) as apossible future neutrino detector within DeepCore would reducethe neutrino energy detection threshold to a few GeV. In additionto the data analysis with DeepCore, a sensitivity study has beenconducted to investigate the performance of PINGU for indirectDM searches in the GC and the Sun. In the Sun WIMPs could begravitationally captured through elastic scattering off nucleons. Inthis thesis, we derive PINGU sensitivities for the velocity averagedDM annihilation cross-section of WIMPs in the GC, and for theSpin-Dependent (SD) and Spin-Independent (SI) WIMP-protonscattering cross-sections, under the assumption of thermodynamicequilibrium between the WIMP capturing and annihilation rate inthe Sun. / IceCube
60

Preparations for the next solar WIMP Analysis with IceCube : Advances in simulation, filtering, event topology identification and analysis approach

Zoll, Marcel Christian Robert January 2014 (has links)
In the year 2011 the construction of IceCube, a neutrino observatory buried in deep clear Antarctic ice, was completed. IceCube now consists of an array of 5160 digital light detection modules assembled on 86 strings, which encloses a instrumented volume of roughly 1~km$^3$ optimized for detection of neutrinos down to energies of 100~GeV. In this detector eight of these strings are arranged in a denser configuration of the low energy extension DeepCore, which pushes the neutrino energy threshold further down to 10~GeV.\\This allows probing for fluxes from various astrophysical sources. Of special interest in context of Dark Matter theories is the Sun as a potential source of energetic neutrinos. There neutrinos can be messenger particles created in annihilations of trapped Dark Matter particles (WIMPs). Searches for solar WIMPs have a tradition in IceCube and shall be continued with data recorded in the completed detector configuration (IC86). Since the detector configuration does not substantially change further, it is worthwhile to revisit, investigate and refine analysis methods developed during the construction phases and improve on them.\\Described in this thesis is the preparation work for such an improved analysis: filter and data treatment studies have been conducted during three years ensuring the quality of the experimental data stream. In parallel the simulation codes 'WimpSim' and 'WimpSim-Reader' have been improved, which provide the signal definition for solar WIMP studies. Also in an extensive investigation about event splitting and hit clustering algorithms has been conducted. This yielded an alternative event splitting and recombination approach using 'MaxDist-Splitter' and 'CoincidentSuite'. In a subsequent study it could be shown that thereby the performance was increased compared to previous solutions by up to 50\%. Also the general benefit of these alternative solutions for general data processing has been investigated, which can remedy so far unregarded problems in lowest level data treatment. Furthermore the analysis strategy has been reviewed and adjusted to the new conditions, which is expected to bring furtherimprovements.\\By this work the foundation for the next solar WIMP analysis has been laid and the achieved improvements are expected to improve the sensitivity. / <p>I like Cats</p> / IceCube

Page generated in 0.0448 seconds