• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 243
  • 42
  • 36
  • 30
  • 12
  • 6
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 602
  • 309
  • 166
  • 135
  • 135
  • 114
  • 98
  • 94
  • 85
  • 70
  • 56
  • 51
  • 50
  • 49
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Combustion Kinetic Studies of Gasolines and Surrogates

Javed, Tamour 11 1900 (has links)
Future thrusts for gasoline engine development can be broadly summarized into two categories: (i) efficiency improvements in conventional spark ignition engines, and (ii) development of advance compression ignition (ACI) concepts. Efficiency improvements in conventional spark ignition engines requires downsizing (and turbocharging) which may be achieved by using high octane gasolines, whereas, low octane gasolines fuels are anticipated for ACI concepts. The current work provides the essential combustion kinetic data, targeting both thrusts, that is needed to develop high fidelity gasoline surrogate mechanisms and surrogate complexity guidelines. Ignition delay times of a wide range of certified gasolines and surrogates are reported here. These measurements were performed in shock tubes and rapid compression machines over a wide range of experimental conditions (650 – 1250 K, 10 – 40 bar) relevant to internal combustion engines. Using the measured the data and chemical kinetic analyses, the surrogate complexity requirements for these gasolines in homogeneous environments are specified. For the discussions presented here, gasolines are classified into three categories: (i) Low octane gasolines including Saudi Aramco’s light naphtha fuel (anti-knock index, AKI = (RON + MON)/2 = 64; Sensitivity (S) = RON – MON = 1), certified FACE (Fuels for Advanced Combustion Engines) gasoline I and J (AKI ~ 70, S = 0.7 and 3 respectively), and their Primary Reference Fuels (PRF, mixtures of n-heptane and iso-octane) and multi-component surrogates. (ii) Mid octane gasolines including FACE A and C (AKI ~ 84, S ~ 0 and 1 respectively) and their PRF surrogates. Laser absorption measurements of intermediate and product species formed during gasoline/surrogate oxidation are also reported. (iii) A wide range of n-heptane/iso-octane/toluene (TPRF) blends to adequately represent the octane and sensitivity requirements of high octane gasolines including FACE gasoline F and G (AKI ~ 91, S = 5.6 and 11 respectively) and certified Haltermann (AKI ~ 87, S = 7.6) and Coryton (AKI ~ 92, S = 10.9) gasolines. To assess conditions where shock tubes may not be ideal devices for ignition delay measurements, this work also presents a detailed discussion on shock tube pre-ignition affected ignition data and the ignition regimes in homogeneous environments. The shock tube studies on pre-ignition and associated bulk ignition advance may help engines research community understand and control super-knock events.
272

Univerzální elektronické zapalování pro spalovací motory / Electronic Ignition Unit for Combustion Engine

Čmelík, Matouš January 2016 (has links)
Thesis deals with electronic ignition for a two-cylinder two-stroke engines. In the thesis is described the existing ignition system. In the thesis are described measurement options of the position ot the engine crankshaft. The ignition system is designed mainly for motor JAWA, CZ and motor Trabant. The design is focused on reliability of entire circuit. The main advantage of the entire proposed design is possibility to adjustable ignition curve, depending on several external parameters such as speed or temperature of the engine. The proposed ignition has been tested in vehicle Velorex.
273

AN EXPERIMENTAL STUDY OF FACTORS AFFECTING HYPERGOLIC IGNITION OF AMMONIA BORANE

Kathryn A Clements (8731602) 21 April 2020 (has links)
Hypergolic hybrid motors are advantageous for rocket propulsion due to their simplicity, reliability, low weight, and safety. Many hypergolic hybrid fuels with promising theoretical performance are not practical due to their sensitivity to temperature or moisture. Ammonia borane (AB) has been proposed and studied as a potential hypergolic hybrid fuel that provides both excellent performance and storability. This study investigates the effect of droplet impact velocity, pellet composition, and storage humidity on ignition delay of AB with white fuming nitric acid as the oxidizer. Most ignition delays measured were under 50 ms with many under 10 ms and some even under 2 ms, which is extremely short for hybrid systems. Higher droplet velocities led to slightly shorter ignition delays, and exposing samples to humidity slightly increased ignition delay. An AB pellet composition of at least 20% epoxy binder was found to minimize ignition delay. The epoxy facilitates ignition by absorbing or adhering the oxidizer and slowing the reaction with the fuel, preventing oxidizer expulsion and holding it close to the fuel. These results emphasize the importance of binder properties in hypergolic hybrids. Pellets varying in composition and storage method were extinguished and reignited with the oxidizer to demonstrate reignition capability.
274

Fluoropolymer-based 3D printable pyrotechnic compositions

Grobler, Johannes Marthinus January 2017 (has links)
The work herein covers the complete process for development, production and testing of a melt processable pyrotechnic composition, with the goal of using the composition as a printing material in a fused deposition modelling (FDM) type 3D printer. 3D printing is fast becoming an area of interest for energetic materials research. This is due to the role that geometry can play in combustion performance of a composition and 3D printing’s ability to produce a variety of complex designs. Melt processable fluoropolymers were selected as oxidisers. The polymers selected for the study were FK-800® and Dyneon 31508®. Both are co-polymers of vinylidene fluoride (VDF) and chlorotrifluoroethylene (CTFE). Aluminium was the choice fuel in this instance as it had better energetic performance than the alternatives investigated. It was also deemed to be a safer fuel when considering the combustion products. Hazardous combustion products like hydrofluoric and hydrochloric acid could be suppressed by increasing the fuel loading to 30 wt.%, thereby reducing the risks associated with burning the composition. Preliminary differential thermal analysis (DTA) analysis indicated that the compositions would only ignite above 400 °C which was well above the suggested processing temperature of 230 °C as determined from thermogravimetric (TGA) analysis. These thermal analysis techniques indicated that the reactions were most likely a gas-solid reactions due to ignition temperatures being significantly lower than those associated with phase changes occurring in the fuels tested, yet above the decomposition temperatures for the oxidisers. ii Extrusion of the compositions proceeded with addition of LFC-1® liquid fluoroelastomer. This addition was made in order to order to lower the melt viscosity, thereby improving the quality of the filament produced. Compositions were extruded with an aluminium loading of 30 wt.%. Oxidiser and LFC-1® made up the rest of the mass with the LFC-1® contributions being either 7 wt.% or 14 wt.%. Burn rates, temperatures and ignition delays were all influenced by the addition of LFC-1® to the system. FK-800® was found to be a better oxidiser in this instance since its burn rates were consistent especially when compared to erratic nature of the Dyneon 31508® burns. Linear burn rates for the FK-800® increased from 15.9 mm·s−1 to 18.9 mm·s−1 with the increase in LFC-1® loading. Combustion temperature also increased by approximately 180 °C from 794 °C. Printing with the material was achieved only after significant alterations were made to the hot end used. Printing proceeded in a staged, start-stop manner. After each new layer of material was deposited the printer was cleared of material and the hot end was allowed to cool. If this procedure was not followed it led to significant preheating of the material within the feeding section of the extruder. This premature heating caused feeding problems due to softening and swelling of the material within the cold side of the hot end which led to blockages, leading to the conclusion that the composition was not compatible with the off-the-shelf hot end used in this study. Low quality printing could be achieved with both FK-800® and Dyneon 31508® compositions. This would suggest that slight compositional changes paired with the alterations made to the hot end could improve the quality of the prints to an extent that would be comparable to that of more commonplace printing materials. / Dissertation (MEng)--University of Pretoria, 2017. / Chemical Engineering / MEng / Unrestricted
275

An experimental study of spray collapse under ash boiling conditions

Du, Jianguo 07 1900 (has links)
Gasoline and gasoline-like fuels (naphtha) have high volatility, which results in flash boiling spray in gasoline engines when operated at throttling or low load conditions. Flash boiling can achieve better atomization, thus benefit fuel evaporation and fuel-air mixing. However, when flash boiling occurs, spray morphology, and fuel distribution are dramatically varied from the injectors' intentional design. This difference will affect the performance of combustion and emissions. Thus it is essential to investigate the spray collapse phenomenon regarding varied conditions. The currently developing gasoline compression ignition (GCI) engines, also has throttled stoichiometric spark ignition operation mode, which inevitably has flash boiling possibility. However, there is a lack of research on flash boiling spray with a GCI injector, which has a large designed cone angle. This work aims to understand the spray collapse phenomenon and fill the gap in GCI flash boiling spray. Simultaneous side-view diffused back illumination (DBI) and front-view mie-scattering are used to capture the liquid spray development. Simultaneous shadowgraph from side and front view are used for recording the liquid+vapor phase spray development. Criteria for distinguishing different spray regimes have been established from these results. It shows this GCI injector is more resistant to collapse than the other conventional gasoline direct injection (GDI) injectors reported in the literature. A combination of DBI and space-time tomographic algorithm is validated in this work, achieving 3D reconstruction of the spray volume development from non-flashing to collapsed spray regime at low cost. The 3D results help elucidate the spray collapse procedure and provide validation data for CFD simulation. Structured laser illumination planar imaging (SLIPI) is firstly implemented in flash boiling spray study in this work to suppress the multiple scattering effect. Reconstructed 3D results from slice sweeping by SLIPI methods exposes the hollow structure in the spray's collapsed central jet, which has not been reported previously by other methods. Different spray motion types are summarized for the transitional and collapsed spray regime from the SLIPI slice and confirmed by the particle image velocimetry (PIV) technique.
276

Hot jet ignition delay characterization of methane and hydrogen at elevated temperatures

Kojok, Ali Tarraf 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This study contributes to a better understanding of ignition by hot combustion gases which finds application in internal combustion chambers with pre-chamber ignition as well as in wave rotor engine applications. The experimental apparatus consists of two combustion chambers: a pre chamber that generates the transient hot jet of gas and a main chamber which contains the main fuel air blend under study. Variables considered are three fuel mixtures (Hydrogen, Methane, 50\% Hydrogen-Methane), initial pressure in the pre-chamber ranging from 1 to 2 atm, equivalence ratio of the fuel air mixture in the main combustion chamber ranging from 0.4 to 1.5, and initial temperature of the main combustion chamber mixture ranging from 297 K to 500 K. Experimental data makes use of 4 pressure sensors with a recorded sampling rate up to 300 kHz, as well as high speed Schlieren imaging with a recorded frame rate up to 20,833 frame per seconds. Results shows an overall increase in ignition delay with increasing equivalence ratio. High temperature of the main chamber blend was found not to affect hot jet ignition delay considerably. Physical mixing effects, and density of the main chamber mixture have a greater effect on hot jet ignition delay.
277

Conditional Moment Closure Model for Ignition of Homogeneous Fuel/Air Mixtures in Internal Combustion Engines

Wang, Wei 01 October 2020 (has links)
No description available.
278

Strategies for Optimization of Diesel-Ignited Propane Dual Fuel Combustion in a Heavy Duty Compression Ignition Engine

Carpenter, Chad Duane 14 December 2013 (has links)
A 12.9 L heavy duty compression ignition engine was tested with strategies for dual fuel optimization. The effects of varied intake manifold pressure as well as split-injection strategies at a load of 5 bar BMEP and 85 PES were observed. These results were used to allow testing of split-injection strategies at a higher load of 10 bar BMEP at 70 PES that were void of MPRR above 2000 kPa/CAD. The split-injection strategies at 5 bar BMEP showed that lower BSNOx can be achieved with minimal drop in FCE. Varying intake manifold pressure revealed that combustion occurs earlier in a cycle with increasing intake manifold pressure and indirectly increasing FCE. A load of 10 bar BMEP at 70 PES should only use split-injection strategy to maintain load without high MPRR as efficiency drops with dependency on the second injection.
279

A Rapid Compression Machine with the Novel Concept of Crevice Containment

Bhari, Anil January 2010 (has links)
No description available.
280

Application of Fuel Element Combustion Properties to a Semi-Empirical Flame Propagation Model for Live Wildland Utah Shrubs

Shen, Chen 20 March 2013 (has links) (PDF)
Current field models for wildfire prediction are mostly based on dry or low-moisture fuel combustion research. To better study live fuel combustion behavior and develop the current semi-empirical bush combustion model, a laminar flow flat-flame burner was used to provide a convection heating source to ignite individual live fuel samples. In this research project, four Utah species were studied: Gambel oak (Quercus gambelii), canyon maple (Acer grandidentatum), big sagebrush (Artemisia tridentata) and Utah juniper (Juniperus osteosperma). Leaf geometrical parameters and time-dependent combustion behavior were recorded. Qualitative results included various combustion phenomena like bursting, brand formation and bending. Quantitative results included determination of best correlations for (a) leaf geometrical properties (individual leaf dry mass (mdry), thickness (Δx), leaf width (W) and leaf length (L)) and (b) combustion characteristics (e.g., time to ignition (tig), time of flame duration (tfd), time to maximum flame height (tfh), time to burnout (tbrn), and maximum flame height (hf,max)). A semi-empirical bush model was expanded to describe the combustion behavior of the three Utah species (Gambel oak, canyon maple and Utah juniper). Leaf placement and bush structure were determined from the statistical model. A new flame area simulation was explored in the semi-empirical bush model in order to improve the bush burning predictions.

Page generated in 0.0569 seconds