• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 27
  • 13
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 103
  • 103
  • 27
  • 25
  • 23
  • 19
  • 14
  • 13
  • 13
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Perfil de citocinas pró- e anti-inflamatória e da proteína c-reativa no tratamento do tumor venéreo transmissível canino / Pro- and anti-inflammatory cytokines and c-reactive protein profiles during the treatment of canine transmissible venereal tumor

Stumpf, Ana Rita Lancini 28 February 2014 (has links)
The canine transmissible venereal tumor (CTVT) is unique in various aspects, and the principal is that the tumoral cells are not originated from the hos t. Recent findings showed that the CTVT is a transplantable tumor that first appeared in a dog ancestor approximately 10000 years ago. The tumoral cells propagate mainly through coitus, develop a s a graft, and have the capability of installing themselves by mechanisms of escape from the host's immunologic response. This specific response involves cellular and humoral immunity and varies according to some factors not yet very elucidated. Beyond the well-known role of fi ghting the tumor cells, the inflammatory response also plays an involuntary and paradoxical role, w hich results in the promotion of tumor growth by releasing vasculogenic, antiapoptotic, and cellular growth- promoting substances. The fact that tumors can benefit from the inf lammatory response makes the investigation of the mechanisms involved important for the development of new therapies focused on the modulation of the inflammatory response to control the tumor development. The aim of this work is to better understand the mechanisms behind tumora l growth by the measurement of the levels of pro-inflammatory (IL-1, IL-6, TNF- α and INF- γ ) and anti- inflammatory (IL-10) cytokines and the C-reactive protein (CRP) ove r the treatment of dogs naturally infected with CTVT. The quantification of the cytokines and CRP was performed in the animals' serum from samples obtained at the moments of the diagnosis and pre-therapy, immediately before chemotherapy, and after the confirmation of the cure of each animal. According to therapy response, two groups were identified, R, were t he tumor was resistant to therapy and NR, which was susceptible. A cure probability was define d in relation to time of treatment and tumor response to vincristin. In group R all parameter s varied significantly: The expression of pro-inflammatory cytokines and CRP were higher, and of I L-10, lower, comparing to group NR. For pro-inflammatory cytokines, this difference was ma intained until cure. Statistical analysis was able to detect correlations betwee n all variables, demonstrating the participation of cytokines during tumor evolution. The role of inflammati on has been postulated and, although the mechanisms remain unclear, a correlation of chronic i nflammation and cancer susceptibility has been demonstrated. Because CTVT is a tumor of foreign cells, it is a suitable model to investigate the mechanisms involved in tumor maintenance and deve loping, as well as the associated immune response. / O tumor venéreo transmissível canino (TVTc) é um tumor único em vários aspectos, sendo o principal, o fato de as células tumorais não serem originárias do animal acometido. Resultados de pesquisas recentes demonstraram que o TVTc é um tumor transplantável que surgiu em ancestrais do cão doméstico há aproximadamente 10000 anos. As células, que se propagam principalmente pelo coito, se desenvolvem como um enxerto e apresentam a capacidade de se implantar através de mecanismos de escape à resposta imunológica do hospedeiro. Essa resposta envolve a imunidade celular e humoral e varia de acordo com fatores não totalmente elucidados. Além do conhecido papel na resposta imune com o objetivo de combater tumores, a resposta inflamatória desempenha um papel involuntário e paradoxal que resulta na promoção do crescimento tumoral pela liberação de substâncias vasculogênicas, antiapoptóticas e promotoras de crescimento celular. O fato de que os tumores possam se beneficiar da resposta inflamatória torna necessárias pesquisas visando o desenvolvimento de terapias direcionadas à modulação da resposta inflamatória para o controle do desenvolvimento tumoral. Dessa forma, o objetivo deste estudo foi compreender melhor os mecanismos envolvidos no desenvolvimento do tumor através da mensuração dos níveis das citocinas pró-inflamatórias (IL- 1, IL-6, TNF-α e INF-γ) e da anti-inflamatória (IL-10) e de uma proteína de fase aguda da inflamação, a Proteína C-reativa (PCR) durante o tratamento de cães naturalmente infectados pelo TVTc. A quantificação das citocinas e da PCR foi realizada no soro dos animais a partir de amostras obtidas no diagnóstico e pré-terapia, imediatamente antes de cada nova aplicação 9 quimioterápica e no momento em que o animal era considerado curado. A partir da resposta à quimioterapia foram caracterizados grupos de animais de acordo com os tumores resistentes (R) e não-resistentes (NR). Foi estabelecida a probabilidade de cura em relação ao tempo de terapia, de acordo com o tipo de tumor. No grupo R, foi observada variação significativa em todos os parâmetros, sendo a expressão das citocinas pró-inflamatórias e da PCR, mais elevadas e a expressão da IL-10 inferior em relação à expressão observada em amostras dos animais do grupo NR. No caso das citocinas pró-inflamatórias e da PCR, essa diferença se manteve até a cura dos animais, diferindo da IL-10, cujas concentrações foram similares nos dois grupos ao final do tratamento. A análise estatística realizada detectou a presença de correlações entre as variáveis, demonstrando a participação das citocinas durante o processo de evolução tumoral. O papel da inflamação no desenvolvimento do câncer foi postulado, apesar de os mecanismos moleculares não terem sido elucidados, sabe-se que a inflamação crônica eleva a probabilidade do desenvolvimento de tumores. Pelo fato de o TVTc ser um tumor de células estranhas ao organismo, seu estudo é importante para verificar os mecanismos relacionados com a manutenção e desenvolvimento dos tumores, bem como da resposta imune associada.
72

The role of interleukin-1 receptors in brain cell signalling

Nguyen, Loan January 2010 (has links)
IL-1α and IL-1β are two IL-1 agonists which signals at the same receptor complex composed of IL-1R1/IL-1RAcP. However, IL-1α and IL-1β exert differential actions. A recent CNS-specific IL-1 receptor accessory protein, called IL-1RAcPb, has been characterised but its actions are unknown. In T cell line, over expression of IL-1RAcPb negatively regulate IL-1 action (Smith et al, 2009), but over-expression of IL-1RAcPb in HEK cell line induces IL-1 signaling (Lu et al, 2008). The role of IL-1RAcPb has not been studied in primary cells. The aim of this project was to investigate the role of IL-1RAcPb in IL-1-induced actions in neurones and glia, and to determine IL-1α and IL-1β differential actions in these two cell types. The role of IL-1RAcPb in IL-1-induced protein expression and IL 1α and IL-1β differential effects were investigated by treating WT and IL 1RAcPb-/- neurones and glia with IL-1α or IL-1β in the presence or absence of IL-1RA for 24 h followed by assessment of IL-6 induction by ELISA. The mechanism of IL-1RAcPb actions were studied by examining the effects of IL-1α or IL-1β on p38, ERK1/2 and Src kinase activation in neurones and glia by Western blot analysis. SB203580 (p38 inhibitor), UO126 (ERK1/2 inhibitor), and PP2 (Src kinase inhibitor) were used to determine the contribution of p38, ERK1/2 and Src kinase activation to IL-1-induced IL-6 synthesis in neuronal cultures. In WT neurones, IL-1α and IL-1β were equipotent at inducing IL-6 synthesis and p38 activation, whilst both ligands failed to induce ERK1/2 or Src kinase activation. In IL-1RAcPb-/- neurones, IL-1α and IL-1β induced similar levels of IL-6, but IL-1β was more potent than IL-1α at inducing p38 activation. IL-1α-induced p38 activation was reduced in IL-1RAcPb-/- neurones compared to WT neurones. In contrast to WT neurones, ERK1/2 was activated in IL-1RAcPb-/- neurones in response to IL-1α, whilst Src kinase was not activated by IL-1α or IL 1β. IL-1-induced IL-6 synthesis was abolished by IL-1RA, SB203580, UO126 and PP2. Interestingly PP2, a specific Src kinase inhibitor also partially inhibited basal ERK1/2 activity. In WT glial cells, IL-1α was more potent than IL-1β at inducing IL-6 synthesis but both cytokines induced ERK1/2 activation with equal potency. In IL-1RAcPb-/- glia, IL-1α and IL-1β were equally potent at inducing IL-6 synthesis and ERK1/2 activation. However, IL-α-induced-IL-6 synthesis was reduced in IL 1RAcPb-/- glia compared to WT glia. In both WT and IL-1RAcPb-/- glia, IL-1α and IL-1β induced p38 activation but not Src kinase activation . In conclusion, this study showed that in neurones, IL-1RAcPb may contribute to IL-1α-induced p38 activation but negatively regulates IL-1-induced ERK1/2 activation, therefore IL-1RAcPb may have specific effects on different signalling pathways. The effect of IL-1RAcPb could also be cell specific, as IL 1RAcPb contributed to IL-1α-induced p38 signalling in neurones but IL-6 production in glia. The role of IL-1RAcPb remains largely unknown and more investigations are required to elucidate its role in IL-1 signalling in the brain.
73

INTERLEUKIN-10 AS A NEGATIVE REGULATOR OF INTERFERON-MEDIATED IMMUNITY IN CHLAMYDIAL INFECTIONS

Jung, Joo-Yong 06 December 2007 (has links)
No description available.
74

Cell-Type Specific Actions of Inflammatory Mediators in the CNS

An, Ying 08 August 2016 (has links)
No description available.
75

Chondrocyte Regulation by IL-I and IGF-I: Interconnection Between Anabolic and Catabolic Factors

Porter, Ryan Michael 18 November 2005 (has links)
Articular cartilage functions to reduce the mechanical stresses associated with diarthrodial joint movement, protecting these joints over a lifetime of use. Tissue function is maintained through the balance between synthesis and resorption (i.e., metabolism) of extracellular matrix (ECM) by articular chondrocytes (ACs). Two important hormonal regulators of cartilage metabolism are interleukin-1 (IL-1) and insulin-like growth factor-I (IGF-I). These factors have antagonistic effects on chondrocyte activity, and during the progression of osteoarthritis, IL-1 is thought to promote chondrocyte hyporesponsiveness to IGF-I. To better understand how the anabolic (IGF-I) and catabolic (IL-1) stimuli are linked within articular cartilage, we examined the mechanisms by which IL-1 regulates the IGF-I signaling system of ACs. Equine chondrocytes from non-arthritic stifle joints were multiplied over serial passages, re-differentiated in alginate beads, and stimulated with recombinant equine IL-1β. Chondrocytes were assayed for type I IGF receptor (IGF-IR), IGF binding proteins (IGFBPs), and endogenously-secreted IGF-I. Our experimental findings solidify the significance of IL-1 as a key regulator of IGF-I signaling within articular cartilage, demonstrating that regulation of the IGF-I system occurs through both direct (transcription) and indirect (proteolysis) mechanisms. These results have implications for molecular therapies (e.g., gene transfer) directed at reversing osteoarthritic cartilage deterioration. The presented research concerns not only cartilage biology but also tissue engineering strategies for cartilage repair. Alginate hydrogel culture has been reported to re-establish chondrocytic phenotype following monolayer expansion, but studies have not addressed effects on the signaling systems responsible for chondrocyte metabolism. We investigated whether chondrocyte culture history influences the IGF-I system and its regulation by IL-1. ACs expanded by serial passaging were either encapsulated in alginate beads or maintained on tissue culture plastic (TCP). Bead and TCP cells were plated at high-density, stimulated with IL-1β, and assayed for expression of IGF-I signaling mediators. Intermediate alginate culture yielded disparate basal levels of IGF-IR and IGFBP-2, which were attributed to differential transcription. The distinct mediator profiles coincided with varied effects of exogenous IL-1β and IGF-I on collagen Ia1 expression and cell growth rate. This study demonstrates that culture strategy impacts the IGF-I system of ACs, likely impacting their capability to mediate cartilage repair. / Ph. D.
76

Étude de la modulation de l'activité et de l'expression de la NADPH-réductase par la réaction inflammatoire

Dupuis, Mariève January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
77

Prostaglandin E2 in Brain-mediated Illness Responses

Elander, Louise January 2010 (has links)
We are unceasingly exposed to potentially harmful microorganisms. The battle against threatening infectious agents includes activation of both the innate and of the adaptive immune systems. Illness responses are elicited and include inflammation, fever, decreased appetite, lethargy and increased sensitivity to painful stimuli in order to defeat invaders. While many of these signs of disease are controlled by the central nervous system, it has remained an enigma how signals from the peripheral immune system reach the brain through its blood-brain barrier, which precludes macromolecules, including cytokines, from diffusing into the brain parenchyma. Previous findings indicate the existence of a pathway across the blood-brain barrier, which includes binding of the cytokine interleukin-1 (IL-1) to its receptor in the brain vessels, thereby inducing the production of the prostaglandin E2 (PGE2) synthesizing enzymes cyclooxygenase-2 (Cox-2) and microsomal prostaglandin E synthase-1 (mPGES-1), which ultimately synthesize PGE2. PGE2 subsequently binds to any of the four prostaglandin E2 (EP) -receptors. Previous results from our laboratory have suggested that this pathway plays a critical role in the febrile response to infectious stimuli. The present thesis aims at further investigating the molecular events underlying immune-to-brain signalling, with special emphasis on fever, hypothalamic-pituitary-adrenal (HPA) -axis activation and anorexia and their connection to signalling molecules of the cytokine and prostaglandin families, respectively. In paper I, the molecular processes linking the proinflammatory cytokine interleukin-6 (IL-6) and PGE2 in the febrile response were investigated. Both IL-6 and PGE2 have been shown to be critical players in the febrile response, although the molecular connections are not known, i.e. if IL-6 exerts its effects up- or downstream of PGE2. Mice deficient in IL-6 were unable to respond to bacterial lipopolysaccharide (LPS) with a febrile response, but displayed similar induction of Cox-2 and mPGES-1, and similar concentrations of PGE2 in the cerebrospinal fluid as wild-type mice. Paradoxically, the IL-6 deficient mice responded with a dose-dependent elevation of body temperature in response to intracerebroventricularly injected PGE2. Furthermore, IL-6 per se was not pyrogenic when injected peripherally in mice, and did not cause increased levels of PGE2 in cerebrospinal fluid. IL-6 deficient mice were not refractory to the action of PGE2 because of excess production of some hypothermia-producing factor, since administration of a Cox-2 inhibitor in LPS-challenged IL-6 deficient mice did not unmask any hypothermic response, and neutralization of tumor necrosis factor α (TNFα), associated with hypothermia, did not produce fever in LPS-challenged IL-6 deficient mice. These data indicate that IL-6 rather than exerting its effects up- or down-stream of PGE2 affects some process in parallel to PGE2, perhaps by influencing the diffusion and binding of PGE2 onto its target neurons. In papers II and III, we injected the proinflammatory cytokine IL-1β in free-fed wild-type mice, in mice with a deletion of the gene encoding mPGES-1, or in mice deficient in the EP1, EP2 and EP3. Food intake was continuously measured during their active period, revealing that mPGES-1 deficient mice were almost completely resistant to anorexia induced by IL-1β. However, all of the investigated EP receptor deficient mice exhibited a normal profound anorexic response to IL-1β challenge, suggesting that the EP4 is the critical receptor that mediates IL-1β-induced anorexia. We also investigated the role of mPGES-1 in anorexia induced by lipopolysaccharide (LPS) in mPGES-1 deficient mice. The profound anorexic response after LPS-challenge was similar in mPGES-1 deficient and wild-type mice. To further investigate the anorectic behaviour after LPS injection, we pre-starved the animals for 22 hours before injecting them with LPS. In this paradigm, the anorexia was less profound in mPGES-1 knock-out mice. Our results suggest that while the inflammatory anorexia elicited by peripheral IL-1β seems largely to be dependent on mPGES-1-mediated PGE2 synthesis, similar to the febrile response, the LPS-induced anorexia is independent of this mechanism in free-fed mice but not in pre-starved animals. In papers IV and V, the role of prostanoids for the immune-induced HPA-axis response was investigated in mice after genetic deletion or pharmacological inhibition of prostanoid-synthesizing enzymes, including Cox-1, Cox-2, and mPGES-1. The immediate LPS-induced release of ACTH (adrenocorticotropic hormone and corticosteroids was critically dependent on Cox-1 derived prostanoids and occurred independently of Cox-2 and mPGES-1 derived PGE2. In contrast, the delayed HPA-axis response was critically dependent on immune-induced PGE2, synthesized by Cox-2 and mPGES-1, and occurred independently of Cox-1 derived enzymes. In addition, in the mPGES-1 deficient mice, the synthesis of CRH hnRNA and mRNA was decreased in the paraventricular nucleus of the hypothalamus after LPS-challenge, indicating that the delayed hormone secretion was mediated by PGE2-induced gene-transcription of CRH in the hypothalamus. The expression of the c-fos gene and Fos protein, an index of synaptic activation, was maintained in the paraventricular nucleus and its brainstem afferents both after unselective and Cox-2 selective inhibition as well as in Cox-1, Cox-2, and mPGES-1 knock-out mice. This suggests that the immune-induced neuronal activation of autonomic relay nuclei occurs independently of prostanoid synthesis and that it is insufficient for eliciting stress hormone release.
78

Étude de la modulation de l'activité et de l'expression de la NADPH-réductase par la réaction inflammatoire

Dupuis, Mariève January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
79

L’interleukine-33 : de son expression dans le cancer du sein à l’activation des cellules NK / Interleukin-33 : from its expression in breast cancer to the activation of NK cells

Blanc, Elena 22 September 2017 (has links)
L'interleukine-33 (IL-33) est une alarmine appartenant à la famille de l'IL-1. Elle est rapidement libérée lors de stress cellulaires et participe ainsi à la réponse immunitaire en cas de danger. L'IL-33 est une cytokine pléïotrope (réponses immunitaires de type 2 dans l'allergie et les infections parasitaires et de type 1 dans les infections virales, participation à la réponse inflammatoire et à la réparation tissulaire) et son rôle dans les cancers est controversé. Nous avons émis l'hypothèse que des signaux de stress présents dans une tumeur pourraient conduire à la sécrétion de l'IL-33, qui pourrait alors jouer un rôle important dans l'activation de la réponse immunitaire dans les cancers. Dans un premier temps, nous avons montré que l'IL-33 est exprimée dans le stroma des cancers du sein, en particulier de type luminal. Plus précisément, elle est retrouvée dans le noyau des cellules endothéliales et le cytoplasme des fibroblastes et des macrophages. Les mécanismes conduisant à la sécrétion de l'IL-33 au sein des tumeurs sont en cours d'évaluation. Dans un second temps, nous avons montré qu'en combinaison avec l'IL-12, l'IL-33 potentialise les fonctions sécrétoires (notamment l'IFN-?) et cytotoxiques des cellules NK, douées de propriétés anti-tumorales. En effet, l'IL-12 induit l'expression de ST2, le récepteur de l'IL-33, sélectivement à la surface des cellules NK CD56dim, les sensibilisant ainsi à l'IL-33. En comparant l'IL-33 aux membres clés de la famille de l'IL-1, nous avons montré que contrairement à l'IL-33, i) l'IL-1a/ß activent uniquement les cellules NK CD56bright exprimant constitutivement IL-1RI et ii) l'IL-18 stimule fortement les fonctions des deux sous-populations de cellules NK qui expriment l'IL18R à l'état basal. En conclusion, nos résultats pourraient suggérer un rôle anti-tumoral potentiel de l'IL-33 via l'activation des cellules NK et ouvrent sur des stratégies thérapeutiques basées sur l'activation des cellules NK dans les cancers / IL-33 is an alarmin which belongs to the IL-1 family. Upon cellular stress, IL-33 is rapidly released and contributes to the activation of the immune system in case of danger. IL-33 has pleiotropic effects (type 2 immune responses in allergic disease or parasitic infection, type 1 immune responses in viral infection, participation to the inflammatory response and to tissue remodeling and repair) and its role in cancer is controversial. We hypothesize that upon stress related to tumor development, IL-33 could be released and activate immune responses in tumors. First, we showed that IL-33 is expressed in the stroma of breast tumors, in particular in luminal subtype. More precisely, IL-33 is expressed in the nucleus of endothelial cells and in the cytoplasm of fibroblasts and macrophages. The mechanisms responsible for IL-33 release in tumor are under investigation. Then, we demonstrated that IL-33 combined to IL-12 potentiates the secretory (particularly IFN-?) and cytotoxic functions of NK cells, which possess anti-tumoral properties. IL-12 induces ST2 (IL-33 receptor) expression selectively on CD56dim NK cells, making them sensitive to IL-33 stimulation. By comparing IL-33 to key members of the IL-1 family, we showed that in contrast to IL -33, i) IL-1a/ß activate only CD56bright NK cells, which express constitutively IL-1R and ii) IL-18 strongly activates both subsets of NK cells which express constitutively high levels of IL-18R. In conclusion, our results could support a potential anti-tumoral role of IL-33 via NK cell activation and offer new therapeutic opportunities based on NK cell activation in cancer
80

The role of Interleukin-1 signaling in the immune defense and in the development of the T helper cell lineage

Abdulaal, Wesam January 2015 (has links)
IL-1 is a pro-inflammatory cytokine which play an important role in the activation and regulation of host defence and immune responses to inflammation or injury. IL-1 is able to bind and activate IL1-RI and IL1-RII, which are found on many cells types. The role of the IL-1 signalling in the deployment of Th cell subsets, especially Th17 cells is well known. However, the specific cells which are responsible for the expression of IL-1 signalling in the immune defense and in the development of the Th cell lineage in response to infection, is still largely unclear. Therefore in this thesis, IL1-RI conditional knockout mice specifically in hematopoietic cells (IL1-RI vaviCre+) were generated. Using IL1-RI vaviCre+ mice in comparison with IL1-RI global knockout mice (IL1-RI-/-) would determine whether the expression IL-1 signalling from hematopoietic cells is responsible for the immune defense and in the development of the Th1, Th2 and Th17 cells against gastrointestinal helminth Trichuris muris (T.muris) infections. The generation of IL1-RI vaviCre+ mice have been investigated at the genomic and proteomic level in order to confirm that the Il1-rI gene is inactivated in hematopoietic cells. The characterisation of IL1-RI vaviCre + mice at the genomic level confirmed that the Il1-rI gene was obliterated successfully. At protein level the characterisation of IL1- RI vaviCre + mice confirmed that IL1-RI was dysfunctional in hematopoietic cells. Additionally, the development of the immune cells was investigated in IL1-RI vaviCre + and IL1-RI-/- mice. Our findings demonstrated that the lymphocyte development was not affected by the deletion of the IL1- RI gene. This data indicated that IL1- RI vaviCre + and IL1-RI-/- mice are vital in vivo models. In high dose infection, both IL1-RI vaviCre + and IL1-RI -/- mice were able to clear the infections due to their ability to generate a Th2 response. Both IL1-RI vaviCre + and IL1-RI -/- mice infected with low dose of T.muris were susceptible to infections and showed high levels of Th1 cytokines. Thus, we hypothesised that IL1-RI signalling in hematopoietic cells was not required for worm expulsion and the generation of Th2 and Th1 response. Interestingly, low dose T.muris infection showed a clear reduction in the Th17 cytokines IL22 and IL17 in both IL1-RI vaviCre + and IL1-RI -/- mice, suggesting that IL-1 signalling expressed from hematopoietic cells is responsible for the development of Th17 cells and secretion of IL17 and IL22. IL1- RI vaviCre + and IL1-RI -/- mice infected with low dose of T.muris also showed an increase in inflammation in the colon and decreased of goblet cell hyperplasia. It is well known that IL22 plays an important role in preventing tissue damage and repair. Thus, in this study IL22 global knockout mice (IL22 -/-) were used to determine if the change in crypt lengths and goblet cell hyperplasia in IL1-RI vaviCre + and IL1-RI -/- was due to an absence of IL22. Our finding showed that IL22 -/- mice infected with low dose of T.muris had increased crypt length and a reduction in goblet cells. The similar phenotype in crypt length and goblet cell hyperplasia between IL22 -/-, IL1-RI vaviCre + and IL1-RI -/- mice suggested that a lack of IL22 in IL1-RI vaviCre + and IL1-RI -/- mice is responsible for the change in mice phenotype. It also provides more evidence for the role of IL-1 signaling in hematopoietic cells in the generation of Th17 cells and in the production of its cytokine IL22.IL1-RII is an inhibitor of IL1-RI, thus, in this study IL1-RII global knockout mice (IL1-RII -/-) mice was used in comparison with IL1-RI -/- mice to verify the role of IL-1 signaling in the development of Th17 cells. Our finding showed an overexpression of IL17 and IL22 in IL1-RII -/- compared with IL1-RI -/- mice and a higher level of IL17 in IL1-RII -/- mice compared with IL1-RII flox/flox mice. This data confirmed that IL-1 signaling is important for the development of Th17 cells and the production of its cytokine IL17 and IL22.

Page generated in 0.0304 seconds