• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Métrologie ultrarapide : application aux dynamiques laser et à l'imagerie / Ultrafast metrology : application to the study of laser dynamics and for imaging

Hanzard, Pierre-Henry 11 October 2018 (has links)
Ce travail de thèse s’inscrit dans le cadre de la caractérisation optique à haute cadence en temps réel. Des outils de métrologie ultrarapides ont ainsi été utilisés pour l’étude d’une source laser impulsionnelle ainsi que pour l’imagerie de phénomènes physiques. La mise en place et la caractérisation temporelle d’une source laser impulsionnelle a permis l’observation d’événements anormalement intenses pour certains régimes de fonctionnement, et ces dynamiques ont pu être confirmées numériquement. La compréhension de ces phénomènes présente un intérêt fondamentalmais également pratique, notamment en vue de limiter les dommages optiques dans les sources laser. L’utilisation d’une technique d’imagerie appelée « imagerie par étirage temporel » a permis l’observation de jets liquides à une cadence de 80MHz. Reposant sur le principe de Transformée de Fourier Dispersive, cette technique permet de rendre compte de phénomènes non-répétitifs à des cadences élevées, et ainsi d’outrepasser les limitations imposées par les systèmes d’enregistrement conventionnels. La technique a également permis l’étude d’ondes de choc générées par ablation laser, et la détermination du profil de vitesse de l’onde de choc à travers la zone de mesure. Le phénomène de réflexion d’une onde de choc sur une paroi a également pu être observé. / This PhD work is dedicated to optical characterization in real time. Ultrafast metrology tools have thus been used to study a pulsed laser source and also for physical phenomena imaging. The implementation of a temporally well characterized pulsed laser source allowed the observation of events involving abnormally high intensity, the dynamics of which have also been numerically studied and confirmed. Understanding of these phenomena addresses a fundamental and interesting need to prevent optical damage in laser sources. The use of the imaging technique called “time-stretch imaging” allowed the imaging of liquid sprays at an 80MHz repetition rate. Based on Dispersive Fourier Transform, this technique enables the study of non-repetitive events at high sampling frequency, and thus goes beyond the performance of traditional imaging devices. This technique also allowed the tracking of shockwaves, and thus profiling the shockwave’s velocity variation through its propagation along a certain measuring distance. Shockwave reflection has also been observed.
2

Conception et réalisation d'une caméra à balayage de fente à résolution temporelle picoseconde et à haut taux de répétition / Design and implementation of a picosecond time-resolved streak camera and high repetition rate

Wlotzko, Vincent 03 March 2016 (has links)
Les caméras à balayage de fente sont les instruments de détection directe de la lumière les plus précis en termes de résolution temporelle. Ces instruments sont capables de capturer des évènements de l’ordre de la picoseconde à un taux de répétition d’une centaine de mégahertz. Cependant, les performances de la caméra sont limitées par de nombreux phénomènes propres au fonctionnement de cette dernière mais aussi au système l’implémentant. Plusieurs effets dégradant la résolution temporelle sont étudiés. Le premier axe exploré concerne la synchronisation de la caméra avec l’évènement lumineux capturé. Cette investigation débouche sur le développement d’un discriminateur à fraction constante permettant de déclencher la caméra avec un jitter inférieur à 200 fs RMS. Une autre étude présente l’impact qu’ont le bruit d’amplitude et le bruit de phase des lasers usuellement utilisés avec la caméra sur sa synchronisation. Enfin une analyse des phénomènes intrinsèques à la photocathode de la caméra permet d’évaluer la variation du temps de transit des électrons dans celle-ci. / Streak cameras are the direct light detection instruments that are the best in terms of temporal resolution. Those instruments can capture picosecond light events at a hundred megahertz repetition rate. However their characteristics are limited by various phenomena specific to the camera and the implementing system. Several effects that affect the temporal resolution are studied. The first examined line deals with the synchronization of the camera with the studied light event. This inquiry led to the design of a constant fraction discriminator allowing a sub 200 fs RMS jitter triggering. Another study shows the impact of the usually used laser amplitude noise and phase noise on the system’s synchronization. Finally, an analysis of the camera’s photocathode intrinsic phenomena allows estimating the transit time variation of the electrons within the vacuum tube.
3

Ultrafast, broadband and multi-pulse transmissions for ultrasonic imaging / Émission d'ondes multi-impulsions, planes et larges bandes pour l'acquisition d'images ultrasonores

Benane, Mehdi Yanis 10 December 2018 (has links)
L'échographie est un outil de diagnostic largement utilisé grâce à des vertus telles que l'acquisition / traitement de données en temps réel, la facilité d'utilisation et la sécurité pour le patient / praticien pendant l'examen. Cependant, comparée à d'autres méthodes d'imagerie telles que la tomographie à rayons X et l'imagerie par résonance magnétique, l'échographie présente l'inconvénient de fournir une qualité d'image relativement basse. Dans cette thèse, nous étudions une méthode capable d'augmenter la qualité d'image, permettant ainsi de meilleurs diagnostics échographiques. Afin d'augmenter le rapport signal / bruit des signaux reçus, nous proposons d'utiliser des signaux modulés en fréquence (chirps). Pour éviter l'effet négatif de la bande passante limitée de la sonde, nous modulons en amplitude les signaux d'excitations afin d'augmenter l'énergie du signal dans les bandes de fréquences où la sonde est moins efficace. Pour compresser l'énergie des échos, nous utilisons des filtres de Wiener afin d'obtenir un bon compromis résolution spatiale / stabilité du bruit. Nous combinons cette méthode appelée REC (Resolution Enhancement Technique) avec l’imagerie ultrarapide. Nous montrons des résultats simulés et expérimentaux (in-vitro, ex-vivo et in-vivo) prometteurs. De plus, nous adaptons REC afin de compenser l'effet d'atténuation tissulaire. Cette amélioration est validée expérimentalement sur des phantoms. Nous adaptons également REC à la propagation non linéaire des ondes ultrasonores, en proposant une technique d'inversion d'impulsions qui utilise REC pour fournir une meilleure résolution et un meilleur rapport contraste / bruit. Ensuite, nous appliquons REC à différents schémas d’acquisition tels que les ondes divergentes et la transmission multi-lignes (MLT). Nous montrons également que la qualité d’image peut être augmentée davantage en tenant compte de la réponse impulsionnelle spatiale de la sonde lorsque REC et MLT sont combinés / Ultrasound imaging is a diagnostic tool widely used thanks to such virtues as real-time data acquisition / processing, ease of use and safety for the patient / practitioner during examination. However, when compared to other imaging methods such as X-ray tomography and Magnetic Resonance Imaging, the echography has the disadvantage to provide relatively low image quality. In this thesis, we study a method that is able to increase the ultrasound image quality, thus paving the way towards improved diagnostics based on echography and novel ultrasound applications. In order to increase the echo signal to noise ratio of the received signals, we propose to use linear frequency modulated signals, also called chirps. To avoid the negative effect of the bandlimited acquisition probe, we apply a pre-enhancement step on the probe excitation signals in order to boost the signal energy in the frequency bands where the probe is less efficient. To compress the echo energy in reception, we use Wiener filters that allow obtaining a good trade-off between the spatial resolution and noise stability. We apply the previously detailed pipeline, also called REC (Resolution Enhancement Technique) on ultrafast imaging schemes. We show promising results in simulation and in-vitro, ex-vivo, in-vivo acquisitions. Furthermore, we adapt REC in such way that the frequency dependent tissue attenuation effect is compensated for. This improvement is validated in simulation and phantom experiments. We also adapt REC to the nonlinear propagation of ultrasound waves, by proposing a pulse inversion technique that uses REC to provide a better image resolution and contrast to noise ratio. Then, we demonstrate the generality of the REC method by applying it to different acquisition schemes such as diverging wave compounding and Multi Line Transmit (MLT). We also show that the image quality can be increased more by taking into account the spatial impulse response of the ultrasound probe when REC and MLT are combined
4

High aspect ratio sub-micron structuring of transparent materials using non-diffractive ultrafast laser beams : dynamics and interaction regimes / Structuration sub-micronique de matériaux transparents à haut rapport d'aspect par faisceaux laser ultra-rapides non-diffractifs : dynamique et régimes d'interaction

Velpula, Praveen Kumar 24 March 2015 (has links)
Cette thèse se concentre sur la contrôlabilité de l'indice de réfraction au niveau sub-micronique par changements d'indice induits par laser sur de longues dimensions i.e., avec des hauts rapports d'aspect élevés et des sections à l'échelle nanométrique. À cette fin, nous explorons les faisceaux ultracourts de Bessel non-diffractifs d'ordre zéro et les facteurs qui contribuent au confinement de l'énergie au-delà de la limite de diffraction. Le traitement par laser de matériaux transparents à l'aide de faisceaux non diffractifs offre un avantage important pour les structures sub-microniques en volume de haut rapport d'aspect à des fins applicatives en nanophotonique et en nanofluidique. Nous présentons l'effet de différentes conditions de focalisation et de paramètres laser sur la modification de la silice fondue, explorant ainsi les différents régimes d'interaction. Cette thèse aborde essentiellement des conditions modérées de focalisation car elles offrent un régime d'interaction stable sur une large gamme de paramètres laser, permettant l'ingénierie de la dispersion. La durée de l'impulsion laser s'est révélée être essentielle dans la définition du type de modification de l'indice de réfraction ou de modification structurale. Par exemple, l'usinage utilisant des impulsions laser femtosecondes entraîne une augmentation des structures d'indice de réfraction alors que les impulsions laser picosecondes engendrent une cavité uniforme i.e., des structures de faible indice. Pour acquérir un meilleur contrôle et une meilleure précision du dépôt d'énergie laser, un ensemble de mécanismes physiques responsables des dommages induits par laser dans des conditions d'excitation non-diffractives a été observé expérimentalement et examiné par des simulations indiquant le rôle essentiel de la diffusion de la lumière sur les électrons. Des mesures de microscopie pompe-sonde résolues en temps avec une résolution temporelle sub-picoseconde et spatiale sub-micronique donnent accès à l'excitation et à la relaxation dynamique instantanées. La transmission optique dynamique et le contraste de phase offrent des informations complémentaires sur la réponse électronique ou sur celle de la matrice vitreuse. La dynamique ultrarapide des porteurs libres a été particulièrement étudiée puisque le transfert d'énergie des électrons vers le réseau est la clé de transformation ultérieure du matériau. Le rôle de l'excitation instantanée pour différentes durées et énergie d'impulsion laser est exposé. Ainsi, la dynamique complète des porteurs de charge est présentée pour différents paramètres du laser. En particulier, la dynamique d'obtention de structures d'indice de réfraction positif et des cavités uniformes indique deux chemins différents de relaxation électronique et de dépôt de l'énergie: une relaxation rapide par l'intermédiaire de défauts pour les structures d'indice positif et une relaxation thermomécanique lente pour les cavités nanométriques. Enfin, en corrélant les résultats des études résolues en temps, les simulations et les résultats de photoluminescence après irradiation, nous formulons des scénarios potentiels de formation de l'indice de réfraction positif ainsi que des structures d'indice faible ou de vides uniformes / This thesis is focused on the controllability of laser-induced refractive index changes at sub-micron level over long dimensions i.e., with high aspect ratios and sections on the nanoscale. To this end, we explore non-diffractive zerothorder ultrafast Bessel beams and factors contributing to energy confinement beyond the diffraction limit. Laser processing of transparent materials using non-diffracting beams offers a strong advantage for high aspect ratio submicron structures inside the bulk in view of nanophotonics and nanouidics applications. We present the role of various focusing conditions and laser parameters on material modification in bulk fused silica and explore the different interaction regimes. This thesis tackles mostly the moderate focusing conditions as they offer a stable interaction regime backed up dispersion engineering over a large range of laser parameters. The laser pulse duration was found to be key in defining the type of laser induced refractive index or structural modification. For instance, machining using femtosecond laser pulses results in increased refractive index structures whereas picosecond laser pulses result in uniform void i.e., low index structures. To acquire better control over the laser energy deposition and precision, a range of physical mechanisms responsible for the laser induced damage in non-diffractive excitation conditions have been observed experimentally and further interrogated by simulations indicating a critical role of light scattering on carriers. Time-resolved pump-probe microscopy measurements with a sub-picosecond temporal and sub-micron spatial resolution allow access to the instantaneous excitation and relaxation dynamics. Dynamic optical transmission and phase contrast o_er complementary information of either electronic and glass matrix response. Primarily, ultrafast dynamics of free carriers was studied as the electron mediated energy transfer to the lattice is key to the subsequent material transformation. Role of instantaneous excitation at different laser pulse durations and energies is outlined. Then complete carrier dynamics is presented at different laser parameters. Particularly dynamics in conditions of positive refractive index structures and uniform voids is indicating two different paths of electronic relaxation and energy deposition: a fast defect mediated relaxation for positive index structures and slow thermomechanical relaxation for nanosize void structures. Finally, by correlating the results of time resolved studies, simulations and post-irradiated photoluminescence results, we formulate potential formation scenarios for the positive refractive index and low index or uniform void structures
5

Estimation du mouvement de la paroi carotidienne en imagerie ultrasonore par une approche de marquage ultrasonore / Motion estimation of the carotid wall in ultrasound imaging using transverses oscillations

Salles, Sébastien 02 October 2015 (has links)
Ce travail de thèse est axé sur le domaine du traitement d’images biomédicales. L’objectif de notre étude est l’estimation des paramètres traduisant les propriétés mécaniques de l’artère carotide in vivo en imagerie échographique, dans une optique de détection précoce des pathologies cardiovasculaires. L’étude des comportements dynamiques de l’artère pour le dépistage précoce de l’athérosclérose constitue à ce jour une piste privilégiée. Cependant, malgré les avancées récentes, l’estimation du mouvement de la paroi carotidienne reste toujours difficile, notamment dans la direction longitudinale (direction parallèle au vaisseau). L’élaboration d’une méthode innovante permettant d’étudier le mouvement de la paroi carotidienne constitue la principale motivation de ce travail de thèse. Les trois contributions principales proposées dans ce travail sont i) le développement, la validation, et l’évaluation clinique d’une méthode originale d’estimation de mouvement 2D adaptée au mouvement de la paroi carotidienne, ii) la validation en simulation, et expérimentale de l’extension à la 3D de la méthode d’estimation proposée, et iii) l’évaluation expérimentale de la méthode proposée, en imagerie ultrasonore ultra-rapide, dans le cadre de l’estimation locale de la vitesse de l’onde de pouls. Nous proposons une méthode d’estimation de mouvement combinant un marquage ultrasonore dans la direction latérale, et un estimateur de mouvement basé sur la phase des images ultrasonores. Le marquage ultrasonore est réalisé par l’intermédiaire d’oscillations transverses. Nous proposons deux approches différentes pour introduire ces oscillations transverses, une approche classique utilisant une fonction de pondération spécifique, et une approche originale par filtrage permettant de contrôler de manière optimale leurs formations. L’estimateur de mouvement proposé utilise les phases analytiques des images radiofréquences, extraites par l’approche de Hahn. Ce travail de thèse montre que la méthode proposée permet une estimation de mouvement plus précise dans la direction longitudinale, et plus généralement dans les directions perpendiculaires au faisceau ultrasonore, que celle obtenue avec d’autres méthodes plus traditionnelles. De plus, l’évaluation expérimentale de la méthode sur des séquences d’images ultrasonores ultra-rapides issues de fantômes de carotide, a permis l’estimation locale de la vitesse de propagation de l’onde de pouls, la mise en évidence de la propagation d’un mouvement longitudinal et enfin l’estimation du module de Young des vaisseaux. / This work focuses on the processing of biomedical images. The aim of our study is to estimate the mechanical properties of the carotid artery in vivo using ultrasound imaging, in order to detect cardiovascular diseases at an early stage. Over the last decade, researchers have shown interest in studying artery wall motion, especially the motion of the carotid intima-media complex in order to demonstrate its significance as a marker of Atherosclerosis. However, despite recent progress, motion estimation of the carotid wall is still difficult, particularly in the longitudinal direction (direction parallel to the probe). The development of an innovative method for studying the movement of the carotid artery wall is the main motivation of this thesis. The three main contributions proposed in this work are i) the development, the validation, and the clinical evaluation of a novel method for 2D motion estimation of the carotid wall, ii) the development, the simulation and the experimental validation of the 3D extension of the estimation method proposed, and iii) the experimental evaluation of the 2D proposed method in ultra-fast imaging, for the estimation of the local pulse wave velocity. We propose a motion estimation method combining tagging of the ultrasound images, and a motion estimator based on the phase of the ultrasound images. The ultrasonic tagging is produced by means of transverse oscillations. We present two different approaches to introduce these transverses oscillations, a classic approach using a specific apodization function and a new approach based on filtering. The proposed motion estimator uses the 2D analytical phase of RF images using the Hahn approach. This thesis work shows that, compared with conventional methods, the proposed approach provides more accurate motion estimation in the longitudinal direction, and more generally in directions perpendicular to the beam axis. Also, the experimental evaluation of our method on ultra-fast images sequences from carotid phantom was used to validate our method regarding the estimation of the pulse wave velocity, the Young’s modulus of the vessels wall, and the propagation of a longitudinal movement.

Page generated in 0.0711 seconds