Spelling suggestions: "subject:"imageur CMOS"" "subject:"imageurs CMOS""
1 |
Étude d’imageurs CMOS fortement dépeuplés pour l’amélioration des performances des futurs instruments d’observation spatiaux / Study of more depleted CMOS image sensors for increasing the performances of imaging systems for space applicationsLincelles, Jean-Baptiste 21 September 2015 (has links)
Ce travail de thèse étudie les moyens d’étendre les zones de charge d’espace des photodiodes PN d’un imageur CMOS afin d’améliorer la collection des charges photogénérées dans le silicium, en particulier dans le proche infra-rouge. Deux possibilités sont abordées : l’augmentation de la tension de polarisation des photodiodes et la diminution du dopage du silicium. Dans un premier temps, une étude théorique articulée autour de modèles analytiques et de simulations TCAD montre les difficultés technologiques pour parvenir à une augmentation de polarisation des photodiodes, ainsi que les conséquences de l’utilisation de substrats résistifs sur les éléments de l’imageur et sur ses performances. Ces simulations permettent de définir les éléments influençant l’extension de la charge d’espace d’un pixel. Sur la base de cette étude, un imageur CMOS à pixel 3T a été développé et fabriqué sur substrat float-zone très fortement résistif afin de valider les observations théoriques. La caractérisation de ce composant confirme la dépendance de la zone dépeuplée à la conception du pixel. Elle démontre également la corrélation entre l’extension des zones dépeuplées et les performances électro-optiques. Des règles de conception sont définies permettant d’optimiser les performances tout en limitant les courants de fuite entre pixels. / This work investigates solutions to extend the space charge region in CMOS image sensors in order to enhance the photo-generatedcharge collection from near-infraredradiations. Photodiode bias increase and low doped silicon substrate are proposed for this study. A theoretical analysis based on analytical model and TCAD simulations shows technological difficulties for photodiode bias in crease and the consequences of using high-resistivity silicon substrates on the imager performances. Space charge region dependency on the pixel design is assessed through simulations. A 3T pixel CMOS image sensor was developed and fabricated on a high resistivity float-zone silicon. Sensor characterization confirms space charge region dependency on the pixel design and the correlation between its extension and electro-optical performances. Design rules are defined to optimize electro-optical performances while limiting punchthrough current in the pixels array.
|
2 |
Architecture SoC-FPGA pour la mesure temps réel par traitement d'image. Conception d'un système embarqué : imageur CMOS et Circuit Logique Programmable.Lelong, Lionel 07 December 2004 (has links) (PDF)
La méthode de mesures par PIV (Particle Image Velocimetry) est une technique pour mesurer un champ de vitesse de manière non intrusive et multipoints. Cette technique utilise l'algorithme de corrélation entre deux images consécutives pour déterminer les vecteurs vitesse. La quantité de calcul requis par cette méthode limite son usage à des traitements en temps différé sur ordinateur. Les performances des ordinateurs demeurent insuffisantes pour ce type d'applications sous contrainte temps réel sur des cadences de données élevés. Au vu de ces besoins, la définition et la conception d'architectures dédiées semblent être une solution adéquate pour atteindre le temps réel. L'évolution des niveaux d'intégration permet le développement des structures dédiées au traitement d'images en temps réel à bas prix. Dans ce travail de thèse, nous nous sommes intéressés à la conception d'une architecture de type SoC (System on-Chip) dédiée aux mesures de paramètres physiques par traitement d'images en temps réel. C'est une architecture hiérarchique et modulaire dédiée à des applications de type flot de données d'entrée dominant. Cette description hiérarchique permet la modification du nombre et/ou de la nature de ces éléments sans modifier profondément l'architecture. Pour le calcul d'une mesure, il faut 267 s avec un FPGA à 50 MHz. Pour estimer les performances du système, un imageur CMOS a été connecté directement au FPGA. Les avantages de ce prototype sont de réduire au minimum le mouvement de grands ensembles de données ainsi que la latence en commençant à traiter des données avant leur complète acquisition.
|
3 |
Solutions alternatives pour améliorer le test de production des capteurs optiques en technologie CMOS / Alternative solution to improve the production test of optical sensors in CMOS technologyFei, Richun 13 October 2015 (has links)
Le test de production des imageurs CMOS est une étape clé du flot de fabrication afin de garantir des produits répondant aux critères de qualité et exempts de défauts de fabrication. Ces tests sont classifiés en test électrique et test optique. Le test électrique est basé sur du test structurel qui vérifie la partie numérique et certain blocks analogiques. La plus grande partie des circuits analogiques et la matrice des capteurs sont testés par le test optique. Ce test est basé sur des captures d'images et sur une recherche des défauts au moyen d'algorithmes de calcul spécifiques appliqué sur les images. Proche du fonctionnement applicatif, ils sont qualifies de test fonctionnels. La couverture des défauts obtenue par les tests de type fonctionnel est généralement inférieure à celle obtenue par un test structurel. L'objectif de cette thèse est d'étudier et développer des solutions de test alternatives aux tests fonctionnels afin d'obtenir des meilleurs taux de couverture de défauts, améliorant ainsi la fiabilité, tout en réduisant le temps de test et son coût. Parmi les défauts optiques qui ont causé des retours client par le passés, le défaut qui présent Horizontal Fixed Pattern Noise (HFPN) donnent lieu à un taux de couverture insuffisant. Ces recherches ont été orientées vers l'amélioration du taux de couverture de défauts dite de HFPN dans le test de production des imageurs CMOS.Le HFPN est défini comme une sorte d'image défaillante qui présente sous la forme des bandes résiduelles horizontales. Il est principalement causé par les défauts dans les lignes d'interconnexion qui alimentent et pilotent les pixels. La détection d'un défaut HFPN dans les tests optiques actuels est par comparer les valeurs moyennes de chaque ligne de pixels avec les lignes adjacentes. Si la différence d'une ligne par rapport aux lignes adjacentes est supérieur à la limites spécifié, la ligne est constaté comme défectueuse. Cette limite est donc difficile d'être ajusté face à un compromis entre le taux de couverture de ce défaut et le rendement.Dans cette thèse, nous avons proposé d'abord une amélioration de l'algorithme de détection pour améliorer le test optique actuelle. L'amélioration de test optique est validée par des résultats de test en production en appliquant le nouvel algorithme. Par la suite, une technique d'auto test (BIST) pour la détection des défauts dans les lignes d'interconnexion de matrice des pixels est étudiée et évalué. Enfin, une puce imageur avec le technique d'auto test embarqué est conçu et fabriqué pour la validation expérimentale. / Current production testing of CMOS imager sensors is mainly based on capturing images and detecting failures by image processing with special algorithms. The fault coverage of this costly optical test is not sufficient given the quality requirements. Studies on devices produced at large volume have shown that Horizontal Fixed Pattern Noise (HFPN) is one of the common image failures encountered on products that present fault coverage problems, and this is the main cause of customer returns for many products. A detailed analysis of failed devices has demonstrated that HFPN failures arise from changes of electronic circuit topology in pixel addressing decoders or the metal lines required for pixel powering and control. These changes are usually due to the presence of spot defects, causing some pixels in a row to operate incorrectly, leading to an HFPN failure. Moreover, defects resulting in partially degraded metal lines may not induce image failure in limited industrial test conditions, passing the optical tests. Later, these defects may produce an image failure in the field, either because the capture conditions would be more stringent, or because the defects would evolve into catastrophic faults due to electromigration. In this paper, we have first enhanced the HFPN detection algorithm in order to improve the fault coverage of the optical test. Next, a built-in self-test structure is presented for the on-chip detection of catastrophic and non-catastrophic defects in the pixel power and control lines.
|
4 |
Conception d'un Imageur CMOS à Colonne Active pour un Biocapteur Optique SPRSalazar, A. 30 October 2013 (has links) (PDF)
Cette thèse présente la conception et le développement d'un imageur CMOS pour bio-capteurs optiques basé sur la résonance plasmonique de surface ou SPR (de l'anglais Surface Plasmon Resonance). Premièrement, les conditions optimales pour la résonance de plasmon dans une interface compatible avec un processus CMOS/Post-CMOS sont obtenus par modélisation avec le logiciel COMSOL. Deuxièmement, un imageur CMOS à Colonne Active de 32x32 pixels est réalisé en technologie CMOS 0,35 m. Dans une interface or-eau avec excitation du prisme et une longueur d'onde de 633 nm, on constate que pour des prismes avec des indices de réfraction de 1,55 et 1,46, le couplage SPR optimal se produit à des angles d'incidence de 68,45◦ et 79,05◦ avec les épaisseurs des couches d'or de 50 nm et 45 nm respectivement. Dans ces conditions, environ 99,19% et 99,99% de l' ́energie de la lumière incidente sera transférée au plasmon de surface. Nous montrons aussi qu'un changement de 10−4 RIU dans l'indice de réfraction du milieu diélectrique, produit un changement de 0,01◦ dans l'angle de résonance de plasmonique, pour un schéma de modulation d'intensité lumineuse ce changement correspond à une variation de 0,08% dans l'énergie de la lumière réfléchie vue par le photodétecteur. Pour l'imageur CMOS conu, une photodiode caisson-N/subtrat-P est choisie en raison de sa faible capacit ́e de jonction, qui se traduit par un rendement quantique élevé et un gain de conversion élevé. Les simulations sur ordinateur avec Cadence et Silvaco donnent une capacité de jonction de 31 fF et un rendement quantique maximum de 82%. Le pixel de l'imageur est basé sur une configuration à trois transistors (3T) et a un facteur de remplissage de 61%. Le circuit de lecture utilise une technique de Colonne Active (ACS) pour réduire le bruit spatial (FPN) associés aux capteurs à pixels actifs traditionnels (APS). En outre pour compléter la réduction du bruit, un Double Echantillonnage Non-Corrélé (NCDS) et un Double Echantillonnage Delta (DDS) sont utilisés. Un montage optique expérimental est utilisé pour caractériser les performances de l'imageur, les résultats obtenus sont un gain de conversion de 7.3 V/e-, une photodiode avec une capacité de jonction de 21.9 fF, un bruit de lecture de 324,5 μV, ́equivalant approximativement à 45 lectrons, et une gamme dynamique de 62,2 dB. Les avantages de l'ACS et NCDS-DDS sont observés dans les bas niveaux de FPN de pixel et colonne de 0,09% et 0,06% respectivement. Le travail présenté dans cette thèse est une première étape vers le but de d ́evelopper une plateforme de biocapteur entièrement intégrée basée sur SPR, incorporant la source de lumière, l'interface SPR, le canal microfluidique, les éléments optiques et l'imageur CMOS.
|
5 |
Burst CMOS image sensor with on-chip analog to digital conversion / Capteur d'image Burst CMOS avec conversion analogique-numérique sur puceBonnard, Rémi 10 February 2016 (has links)
Ce travail vise à étudier l’apport des technologies d’intégration 3D à l’imagerie CMOS ultra-rapide. La gamme de vitesse d’acquisition considérée ici est du million au milliard d’images par seconde. Cependant au-delà d’une dizaine de milliers d’images par seconde, les architectures classiques de capteur d’images sont limitées par la bande passante des buffers de sortie. Pour atteindre des fréquences supérieures, une architecture d’imageur burst est utilisée où une séquence d’une centaine d’images est acquise et stockée dans le capteur. Les technologies d’intégration 3D ont connu un engouement depuis une dizaine d’années et sont considérées comme une solution complémentaire aux travaux menés sur les dispositifs (transistors, composants passifs) pour améliorer les performances des circuits intégrés. Notre choix s’est porté sur une technologie où les circuits intégrés sont directement empilés avant la mise en boitier (3D-SIC). La densité d’interconnexions entre les différents circuits est suffisante pour permettre l’implémentation d’interconnexions au niveau du pixel. L’intégration 3D offre d’intéressants avantages à l’imagerie intégrée car elle permet de déporter l’électronique de lecture sous le pixel. Elle permet ainsi de maximiser le facteur de remplissage du pixel tout en offrant une large place aux circuits de conditionnement du signal. Dans le cas de l’imagerie burst, cette technologie permet de consacrer une plus grande surface aux mémoires dédiées au stockage de la séquence d’image et ce au plus proche des pixels. Elle permet aussi de réaliser sur la puce la conversion analogique numérique des images acquises. / This work aims to study the inflows of the 3D integration technology to ultra-high speed CMOS imaging. The acquisition speed range considered here is between one million to one billion images per second. However above ten thousand images per second, classical image sensor architectures are limited by the data bandwidth of the output buffers. To reach higher acquisition frequencies, a burst architecture is used where a set of about one hundred images are acquired and stored on-chip. 3D integration technologies become popular more than ten years ago and are considered as a complementary solution to the technological improvements of the devices. We have chosen a technology where integrated circuits are stacked on the top of each other (3D-SIC). The interconnection density between the circuits is high enough to enable interconnections at the pixel level. The 3D integration offers some significant advantages because it allows deporting the readout electronic below the pixel. It thus increases the fill factor of the pixel while offering a wide area to the signal processing circuit. For burst imaging, this technology provides more room to the memory dedicated to the image storage while staying close to the pixel. It also allows implementing analog to digital converter on-chip.
|
Page generated in 0.0332 seconds