• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 38
  • 32
  • 13
  • 2
  • 1
  • 1
  • Tagged with
  • 175
  • 114
  • 112
  • 62
  • 37
  • 36
  • 32
  • 31
  • 30
  • 30
  • 27
  • 26
  • 25
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

A Study of Immersed Boundary Method in a Ribbed Duct for the Internal Cooling of Turbine Blades

He, Long 02 February 2015 (has links)
In this dissertation, Immersed Boundary Method (IBM) is evaluated in ribbed duct geometries to show the potential of simulating complex geometry with a simple structured grid. IBM is first investigated in well-accepted benchmark cases: channel flow and pipe flow with circular cross-section. IBM captures all the flow features with very good accuracy in these two cases. Then a two side ribbed duct geometry is test using IBM at Reynolds number of 20,000 under fully developed assumption. The IBM results agrees well with body conforming grid predictions. A one side ribbed duct geometry is also tested at a bulk Reynolds number of 1.5⨉10⁴. Three cases have been examined for this geometry: a stationary case; a case of positive rotation at a rotation number (Ro=ΩDₕ/U) of 0.3 (destabilizing); and a case of negative rotation at Ro= -0.3 (stabilizing). Time averaged mean, turbulent quantities are presented, together with heat transfer. The overall good agreement between IBM, BCG and experimental results suggests that IBM is a promising method to apply to complex blade geometries. Due to the disadvantage of IBM that it requires large amount of cells to resolve the boundary near the immersed surface, wall modeled LES (WMLES) is evaluated in the final part of this thesis. WMLES is used for simulating turbulent flow in a developing staggered ribbed U-bend duct. Three cases have been tested at a bulk Reynolds number of 10⁵: a stationary case; a positive rotation case at a rotation number Ro=0.2; and a negative rotation case at Ro=-0.2. Coriolis force effects are included in the calculation to evaluate the wall model under the influence of these effects which are known to affect shear layer turbulence production on the leading and trailing sides of the duct. Wall model LES prediction shows good agreement with experimental data. / Master of Science
22

Higher Order Immersed Finite Element Methods for Interface Problems

Meghaichi, Haroun 17 May 2024 (has links)
In this dissertation, we provide a unified framework for analyzing immersed finite element methods in one spatial dimension, and we design a new geometry conforming IFE space in two dimensions with optimal approximation capabilities, alongside with applications to the elliptic interface problem and the hyperbolic interface problem. In the first part, we discuss a general m-th degree IFE space for one dimensional interface problems with many polynomial-like properties, then we develop a general framework for obtaining error estimates for the IFE spaces developed for solving a variety of interface problems, including but not limited to, the elliptic interface problem, the Euler-Bernoulli beam interface problem, the parabolic interface problem, the transport interface problem, and the acoustic interface problem. In the second part, we develop a new m-th degree finite element space based on the differential geometry of the interface to solve interface problems in two spatial dimensions. The proposed IFE space has optimal approximation capabilities, easy to construct, and the IFE functions satisfy the interface conditions exactly. We provide several numerical examples to demonstrate that the IFE space yields optimally converging solutions when applied to the elliptic interface problem and the hyperbolic interface problem with a symmetric interior penalty discontinuous Galerkin formulation. / Doctor of Philosophy / Interface problems appear naturally in many physics and Engineering applications where a physical quantity is considered across materials of different physical properties, such as heat transfer or sound propagation through different materials. Typically, these physical phenomena are modelled by partial differential equations with discontinuous coefficients representing the material properties. The main topics of this dissertation are about the development and analysis of immersed finite element methods for interface problems. The IFE method can use interface independent meshes, and employs approximating functions that capture the features of the solution at the interface. Specifically, we provide a unified framework for analyzing one-dimensional IFE problems, and we design a new framework to construct geometry conforming IFE spaces in two dimensions, with applications to the elliptic interface problem and the hyperbolic interface problem.
23

Análise de desempenho de um método de interfaces imersas de alta ordem / Performance analysis of a high order immersed interface method

Paino, Paulo Celso Vieira 15 April 2011 (has links)
No contexto de Dinâmica de Fluidos Computacional, métodos de simulação de objetos imersos em Malhas Cartesianas têm se mostrado vantajosos tanto em termos de Custo Computacional quanto em termos de precisão numérica. Entretanto, a representação física de objetos imersos nesses domínios computacionais impõe a perda de validade dos esquemas de Diferenças Finitas empregados, na região das superfícies introduzidas. Este trabalho analisa um Método de Interfaces Imersas quanto ao desempenho em aplicações a esquemas de solução numérica de Alta Ordem de precisão. Através de Testes de Refinamento de Malha, é feita a apreciação da ordem de decaimento dos erros das soluções numéricas em comparação com as soluções analíticas para 2 problemas unidimensionais. O primeiro envolve a solução da Equação de Calor unidimensional sujeita a uma Condição Inicial Unitária, e o segundo relaciona-se ao cálculo das duas primeiras derivadas espaciais das funções analíticas Seno e Tangente Hiperbólica. Também é promovida uma análise de forma fragmentária do método, a fim de individualizar a contribuição dos elementos envolvidos no comportamento das soluções geradas. Os resultados obtidos indicam eventuais alterações na ordem de precisão dos esquemas de Diferenças Finitas originalmente aplicados. Esse comportamento e visto como uma dependência que o método escolhido apresenta em relação a função discretizada. Por fim, são elaboradas considerações sobre restrições de aplicabilidade do método escolhido. / In the Computational Fluid Dynamics context, methods for simulating immersed objects in Cartesian Grids have shown advantages regarding both Computational Cost and numerical precision. Nevertheless, the physical representation of immersed objects within these computational domains leads to the loss of validity of the emplyed Finite Dierence Schemes near the immersed surfaces. This work analizes a Immersed Interface Method regarding its performance in High Order Schemes applications. The error decay order for numerical solutions of two 1D problems is observed. The rst problem relates to the solution of the Heat Equation subjected to the unitary initial condition. The second relates to the computation of the rst two derivatives of analytical functions Sin and Hyperbolic Tangent. It\'s also conducted a fragmentary analysis, which is intended to identify the contribution of each element of this method to the character of the generated solution. The results indicate some eventual changes in the Order of the Finite Dierences Schemes employed. This behaviour is regarded as a dependency of this method to the nature of the discretized function. Finaly, some remarks regarding restrictions to this method\'s applicability are made.
24

Análise de desempenho de um método de interfaces imersas de alta ordem / Performance analysis of a high order immersed interface method

Paulo Celso Vieira Paino 15 April 2011 (has links)
No contexto de Dinâmica de Fluidos Computacional, métodos de simulação de objetos imersos em Malhas Cartesianas têm se mostrado vantajosos tanto em termos de Custo Computacional quanto em termos de precisão numérica. Entretanto, a representação física de objetos imersos nesses domínios computacionais impõe a perda de validade dos esquemas de Diferenças Finitas empregados, na região das superfícies introduzidas. Este trabalho analisa um Método de Interfaces Imersas quanto ao desempenho em aplicações a esquemas de solução numérica de Alta Ordem de precisão. Através de Testes de Refinamento de Malha, é feita a apreciação da ordem de decaimento dos erros das soluções numéricas em comparação com as soluções analíticas para 2 problemas unidimensionais. O primeiro envolve a solução da Equação de Calor unidimensional sujeita a uma Condição Inicial Unitária, e o segundo relaciona-se ao cálculo das duas primeiras derivadas espaciais das funções analíticas Seno e Tangente Hiperbólica. Também é promovida uma análise de forma fragmentária do método, a fim de individualizar a contribuição dos elementos envolvidos no comportamento das soluções geradas. Os resultados obtidos indicam eventuais alterações na ordem de precisão dos esquemas de Diferenças Finitas originalmente aplicados. Esse comportamento e visto como uma dependência que o método escolhido apresenta em relação a função discretizada. Por fim, são elaboradas considerações sobre restrições de aplicabilidade do método escolhido. / In the Computational Fluid Dynamics context, methods for simulating immersed objects in Cartesian Grids have shown advantages regarding both Computational Cost and numerical precision. Nevertheless, the physical representation of immersed objects within these computational domains leads to the loss of validity of the emplyed Finite Dierence Schemes near the immersed surfaces. This work analizes a Immersed Interface Method regarding its performance in High Order Schemes applications. The error decay order for numerical solutions of two 1D problems is observed. The rst problem relates to the solution of the Heat Equation subjected to the unitary initial condition. The second relates to the computation of the rst two derivatives of analytical functions Sin and Hyperbolic Tangent. It\'s also conducted a fragmentary analysis, which is intended to identify the contribution of each element of this method to the character of the generated solution. The results indicate some eventual changes in the Order of the Finite Dierences Schemes employed. This behaviour is regarded as a dependency of this method to the nature of the discretized function. Finaly, some remarks regarding restrictions to this method\'s applicability are made.
25

Novel Immersed Interface Method for Solving the Incompressible Navier-Stokes Equations

Brehm, Christoph January 2011 (has links)
For simulations of highly complex geometries, frequently encountered in many fields of science and engineering, the process of generating a high-quality, body-fitted grid is very complicated and time-intensive. Thus, one of the principal goals of contemporary CFD is the development of numerical algorithms, which are able to deliver computationally efficient, and highly accurate solutions for a wide range of applications involving multi-physics problems, e.g. Fluid Structure Interaction (FSI). Immersed interface/boundary methods provide considerable advantages over conventional approaches, especially for flow problems containing moving boundaries.In the present work, a novel, robust, highly-accurate, Immersed Interface Method (IIM) is developed, which is based on a local Taylor-series expansion at irregular grid points enforcing numerical stability through a local stability condition. Various immersed methods have been developed in the past; however, these methods only considered the order of the local truncation error. The numerical stability of these schemes was demonstrated (in a global sense) by considering a number of different test-problems. None of these schemes used a concrete local stability condition to derive the irregular stencil coefficients. This work will demonstrate that the local stability constraint is valid as long as the DFL-number does not reach a limiting value. The IIM integrated into a newly developed Incompressible Navier-Stokes (INS) solver is used herein to simulate fully coupled FSI problems. The extension of the novel IIM to a higher-order method, the compressible Navier-Stokes equations and the Maxwell's equations demonstrate the great potential of the novel IIM.In the second part of this dissertation, the newly developed INS solver is employed to study the flow of a stalled airfoil and steady/unsteady stenotic flows. In this context, a new biglobal stability analysis approach based on solving an Initial Value Problem (IVP), instead of the traditionally used EigenValue Problem (EVP), is presented. It is demonstrated that this approach based on an IVP is computationally less expensive compared to EVP approaches while still capturing the relevant physics.
26

Evaluation d'une méthode de Frontières immergées pour les simulations numériques d'écoulements cardiovasculaires / Evaluation of an Immersed Boundary Method for Numerical Simulations of Cardiovascular Flow

Tayllamin, Bruno 27 November 2012 (has links)
L'approche la plus courante en Mécanique des Fluides Numérique pour réaliser les simulations d'écoulement cardiovasculaire consiste à utiliser des méthodes numériques Body-fitted. Ces méthodes ont permis d'obtenir des simulations d'écoulement sanguin dans les artères qui sont précises et utiles. Toutefois, la génération du maillage body-fitted est une tâche qui demande beaucoup de temps et d'expertise à l'utilisateur.Les méthodes de Frontières Immergées sont des méthodes numériques alternatives qui ont l'avantage d'être plus simples d'emploi car elles ne requièrent aucune tâche de maillage de la part de l'utilisateur. Le travail présenté ici vise à évaluer le potentiel d'un méthode de Frontières Immergées à réaliser des simulations d'écoulement cardiovasculaire.Ce travail s'attache, dans un premier temps, à décrire les capacités de cette méthode numérique à rendre compte de l'imperméabilité et de la mobilité des parois sur des cas relativement simples mais représentatifs d'écoulements cardiovasculaires. Ensuite, des applications de la méthode à des cas d'écoulement cardiovasculaire plus complexes sont montrées. Il s'agira d'abord d'une simulation de l'écoulement dans un modèle rigide d'artère aorte. Puis, la simulation d'un écoulement à l'intérieur d'un ventricule cardiaque à paroi mobile sera montrée. / The most common approach in Computational Fluid Dynamics(CFD) for simulating blood flow into vessel is to make use of a body-fitted me-thod. This approach has lead to accurate and useful simulations of blood flowinto arteries. However, generation of the body-fitted grid is time consuming andrequires from the user an engineering knowledge.The Immersed Boundary Method has emerged as an alternate method whichdoes not require from the user any grid generation task. Simulations are done on astructured Cartesian grid which can be automatically generated. Here we addressthe question of the capability of an Immersed Boundary Method to cope withcardiovascular flow simulations.In particular, we assess the impermeable and moving properties of the wallwhen using the Immersed Boundary Method on simple but relevant vascular flowcases. Then, we show more complex and realistic cardiovascular flow simulations.The first application consists of blood flow simulation inside an aorta cross model.Then, the simulation of blood flow inside a cardiac ventricle with moving wall isshown.
27

Um método de interface imersa de alta ordem para a resolução de equações elípticas com coeficientes descontínuos / A high-order immersed interface method for solving elliptic equations with discontinuous coefficients

Colnago, Marilaine 23 November 2017 (has links)
Problemas de interface do tipo elípticos são frequentemente encontrados em dinâmicas de fluidos, ciências dos materiais, mecânica e outros campos de estudo. Em particular, o clássico Método de Interface Imersa (IIM) figura como uma das abordagens numéricas mais robustas para resolver problemas dessa categoria, o qual tem sido empregado recorrentemente para simular o comportamento de fluxos sobre corpos imersos em malhas cartesianas. Embora esse método seja eficiente e robusto, técnicas construídas com base no IIM impõem como restrições matemáticas diversos tipos de condições de salto na interface a fim de serem passíveis de utilização na prática. Nesta tese, introduzimos um novo método de Interface Imersa para resolver problemas elípticos com coeficientes descontínuos em malhas cartesianas. Diferentemente da maioria das formulações existentes que dependem de vários tipos de condições de salto para produzirem uma solução para o problema elíptico, o esquema aqui proposto reduz significativamente o número de restrições ao solucionar a EDP estudada, isto é, apenas os saltos de ordem zero das incógnitas devem ser fornecidos. A técnica apresentada combina esquemas de Diferenças Finitas, abordagem do Ponto Fantasma, modelos de correções e regras de interpolação em uma metodologia única e concisa. Além disso, o método proposto é capaz de produzir soluções de alta ordem, incluindo cenários onde há poucos dados disponíveis onde o quesito alta precisão é indispensável. A robustez e a precisão do método proposto são verificadas através de uma variedade de experimentos numéricos envolvendo diversos problemas elípticos com interfaces arbitrárias. Finalmente, a partir dos testes numéricos conduzidos, é possível concluir que o método projetado produz aproximações de alta ordem a partir de um número muito condensado de restrições matemáticas. / Elliptic interface problems are often encountered in fluid dynamics, material sciences, mechanics and other relevant fields of study. In particular, the well-known Immersed Interface Method (IIM) figures among the most effective approaches for solving non-trivial problems, where the method is traditionally used to simulate the flow behavior over complex bodies immersed in a cartesian mesh. Although their powerfulness and versatility, techniques that are built in light of the IIM impose as constraints different types of jump conditions at the interface in order to be properly managed and applicable for specific purposes. In this thesis, we introduce a novel Immersed Interface Method for solving Elliptic problems with discontinuous coefficients on cartesian grids. Different from most existing formulations that rely on various jump conditions types to get a valid solution, the present scheme reduces significatively the number of constraints when solving the PDE problem, i.e., only the ordinary jumps of the unknowns are required to be given, a priori. Our technique combines Finite Difference schemes, Ghost node strategy, correction models, and interpolation rules into a unified and concise methodology. Moreover, the method is capable of producing high-order solutions, succeeding in many practical scenarios with little available data wherein high precision is indispensable. We attest the robustness and the accuracy of the proposed method through a variety of numerical experiments involving several Elliptic problems with arbitrary interfaces. Finally, from the conducted numerical tests, we verify that the designed method produces high-order approximations from a very limited number of valid jump constraints.
28

Rhéologie des écoulements granulaires immergés dans un fluide visqueux / Rheology of granular flows immersed in a viscous fluid

Amarsid, Lhassan 25 November 2015 (has links)
Dans cette thèse on s'appuie sur la simulation numérique discrète pour étudier le comportement mécanique d'un milieux granulaire immergé dans un fluide visqueux. Le calcul de la dynamique du mélange est rendu possible grâce à un couplage fort entre méthodes des éléments discrets (DEM) pour les grains et Lattice Boltzmann (LBM) pour le fluide. Pour une large gamme de valeurs de vitesses de cisaillement, contraintes de confinement et viscosités, les résultats montrent que le coefficient de frottement interne et la compacité sont bien décrits par un unique paramètre adimensionnel "visco-inertiel" associant les nombres de Stokes et d'inertie. Le comportement frottant, obtenu à pression de confinement constante, est mis en correspondance avec le comportement visqueux obtenu sous conditions aux limites à volume controlé et qui conduit à une divergence des viscosités effectives normales et tangentielles en inverse du carré de la différence entre compacité et compacité critique de l'assemblage. Les résultats numériques montrent un excellant accord avec les données expérimentales de Boyer et al. (2011). L'évolution de la connectivité et de l'anisotropie du réseau de force en fonction du nombre visco-inertiel montrent que l'augmentation de la résistance au frottement est une conséquence directe d'une anisotropie de structure renforcée à la fois par les effets de la viscosité et de l'inertie des grains. En vue d'une contribution à l'évaluation des risques consécutifs à un accident nucléaire, nous nous sommes également intéressés à l'étude de la fragmentation et de l'écoulement d'agrégats poreux confinés et soumis à une surpression locale exercée par un fluide. L'étude de l'écoulement sous gravité d'un matériau granulaire immergé à travers une constriction a également fait l'objet d'une campagne d'essais numériques. / We investigate the behavior of granular materials immersed in a viscous fluid by means of extensive simulations based on the Discrete Element Method for particle dynamics coupled with the Lattice Boltzmann method for the fluid. We show that, for a broad range of parameters such as shear rate, confining stress and viscosity, the internal friction coefficient and packing fraction are well described by a single "visco-inertial" dimensionless parameter combining inertial and Stokes numbers. The frictional behavior under constant confining pressure is mapped into a viscous behavior under volume-controled conditions, leading to the divergence of the effective normal and shear viscosities in inverse square of the distance to the critical packing fraction. The results are in excellent agreement with the experimental data of Boyer et al. (2011). The evolution of the force network in terms of connectivity and anisotropy as a function of the visco-inertial number, indicates that the increase of frictional strength is a direct consequence of structural anisotropy enhanced by both fluid viscosity and grain inertia. In view of application to a potential nuclear accident, we also study the fragmentation and flow of confined porous aggregates in a fluid under the action of local overpressures and pressure gradients as well as gravity-driven flow of immersed particles in an hourglass.
29

A dimensionally split Cartesian cut cell method for Computational Fluid Dynamics

Gokhale, Nandan Bhushan January 2019 (has links)
We present a novel dimensionally split Cartesian cut cell method to compute inviscid, viscous and turbulent flows around rigid geometries. On a cut cell mesh, the existence of arbitrarily small boundary cells severely restricts the stable time step for an explicit numerical scheme. We solve this `small cell problem' when computing solutions for hyperbolic conservation laws by combining wave speed and geometric information to develop a novel stabilised cut cell flux. The convergence and stability of the developed technique are proved for the one-dimensional linear advection equation, while its multi-dimensional numerical performance is investigated through the computation of solutions to a number of test problems for the linear advection and Euler equations. This work was recently published in the Journal of Computational Physics (Gokhale et al., 2018). Subsequently, we develop the method further to be able to compute solutions for the compressible Navier-Stokes equations. The method is globally second order accurate in the L1 norm, fully conservative, and allows the use of time steps determined by the regular grid spacing. We provide a full description of the three-dimensional implementation of the method and evaluate its numerical performance by computing solutions to a wide range of test problems ranging from the nearly incompressible to the highly compressible flow regimes. This work was recently published in the Journal of Computational Physics (Gokhale et al., 2018). It is the first presentation of a dimensionally split cut cell method for the compressible Navier-Stokes equations in the literature. Finally, we also present an extension of the cut cell method to solve high Reynolds number turbulent automotive flows using a wall-modelled Large Eddy Simulation (WMLES) approach. A full description is provided of the coupling between the (implicit) LES solution and an equilibrium wall function on the cut cell mesh. The combined methodology is used to compute results for the turbulent flow over a square cylinder, and for flow over the SAE Notchback and DrivAer reference automotive geometries. We intend to publish the promising results as part of a future publication, which would be the first assessment of a WMLES Cartesian cut cell approach for computing automotive flows to be presented in the literature.
30

Fluid-structure interactions of wall-mounted flexible slender structures

O'Connor, Joseph January 2018 (has links)
The fluid-structure interactions of wall-mounted slender structures, such as cilia, filaments, flaps, and flags, play an important role in a broad range of physical processes: from the coherent waving motion of vegetation, to the passive flow control capability of hair-like surface coatings. While these systems are ubiquitous, their coupled nonlinear response exhibits a wide variety of behaviours that is yet to be fully understood, especially when multiple structures are considered. The purpose of this work is to investigate, via numerical simulation, the fluid-structure interactions of arrays of slender structures over a range of input conditions. A direct modelling approach, whereby the individual structures and their dynamics are fully resolved, is realised via a lattice Boltzmann-immersed boundary model, which is coupled to two different structural solvers: an Euler-Bernoulli beam model, and a finite element model. Results are presented for three selected test cases - which build in scale from a single flap in a periodic array, to a small finite array of flaps, and finally to a large finite array - and the key behaviour modes are characterised and quantified. Results show a broad range of behaviours, which depend on the flow conditions and structural properties. In particular, the emergence of coherent waving motions are shown to be closely related to the natural frequency of the array. Furthermore, this behaviour is associated with a lock-in between the natural frequency of the array and the predicted frequency of the fluid instabilities. The original contributions of this work are: the development and application of a numerical tool for direct modelling of large arrays of slender structures; the characterisation of the behaviour of slender structures over a range of input conditions; and the exposition of key behaviour modes of slender structures and their relation to input conditions.

Page generated in 0.0284 seconds