• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 3
  • Tagged with
  • 10
  • 10
  • 10
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Um método de interface imersa de alta ordem para a resolução de equações elípticas com coeficientes descontínuos / A high-order immersed interface method for solving elliptic equations with discontinuous coefficients

Colnago, Marilaine 23 November 2017 (has links)
Problemas de interface do tipo elípticos são frequentemente encontrados em dinâmicas de fluidos, ciências dos materiais, mecânica e outros campos de estudo. Em particular, o clássico Método de Interface Imersa (IIM) figura como uma das abordagens numéricas mais robustas para resolver problemas dessa categoria, o qual tem sido empregado recorrentemente para simular o comportamento de fluxos sobre corpos imersos em malhas cartesianas. Embora esse método seja eficiente e robusto, técnicas construídas com base no IIM impõem como restrições matemáticas diversos tipos de condições de salto na interface a fim de serem passíveis de utilização na prática. Nesta tese, introduzimos um novo método de Interface Imersa para resolver problemas elípticos com coeficientes descontínuos em malhas cartesianas. Diferentemente da maioria das formulações existentes que dependem de vários tipos de condições de salto para produzirem uma solução para o problema elíptico, o esquema aqui proposto reduz significativamente o número de restrições ao solucionar a EDP estudada, isto é, apenas os saltos de ordem zero das incógnitas devem ser fornecidos. A técnica apresentada combina esquemas de Diferenças Finitas, abordagem do Ponto Fantasma, modelos de correções e regras de interpolação em uma metodologia única e concisa. Além disso, o método proposto é capaz de produzir soluções de alta ordem, incluindo cenários onde há poucos dados disponíveis onde o quesito alta precisão é indispensável. A robustez e a precisão do método proposto são verificadas através de uma variedade de experimentos numéricos envolvendo diversos problemas elípticos com interfaces arbitrárias. Finalmente, a partir dos testes numéricos conduzidos, é possível concluir que o método projetado produz aproximações de alta ordem a partir de um número muito condensado de restrições matemáticas. / Elliptic interface problems are often encountered in fluid dynamics, material sciences, mechanics and other relevant fields of study. In particular, the well-known Immersed Interface Method (IIM) figures among the most effective approaches for solving non-trivial problems, where the method is traditionally used to simulate the flow behavior over complex bodies immersed in a cartesian mesh. Although their powerfulness and versatility, techniques that are built in light of the IIM impose as constraints different types of jump conditions at the interface in order to be properly managed and applicable for specific purposes. In this thesis, we introduce a novel Immersed Interface Method for solving Elliptic problems with discontinuous coefficients on cartesian grids. Different from most existing formulations that rely on various jump conditions types to get a valid solution, the present scheme reduces significatively the number of constraints when solving the PDE problem, i.e., only the ordinary jumps of the unknowns are required to be given, a priori. Our technique combines Finite Difference schemes, Ghost node strategy, correction models, and interpolation rules into a unified and concise methodology. Moreover, the method is capable of producing high-order solutions, succeeding in many practical scenarios with little available data wherein high precision is indispensable. We attest the robustness and the accuracy of the proposed method through a variety of numerical experiments involving several Elliptic problems with arbitrary interfaces. Finally, from the conducted numerical tests, we verify that the designed method produces high-order approximations from a very limited number of valid jump constraints.
2

An Immersed Interface Method for the Incompressible Navier-Stokes Equations in Irregular Domains

Le, Duc-Vinh, Khoo, Boo Cheong, Peraire, Jaime 01 1900 (has links)
We present an immersed interface method for the incompressible Navier Stokes equations capable of handling rigid immersed boundaries. The immersed boundary is represented by a set of Lagrangian control points. In order to guarantee that the no-slip condition on the boundary is satisfied, singular forces are applied on the fluid at the immersed boundary. The forces are related to the jumps in pressure and the jumps in the derivatives of both pressure and velocity, and are interpolated using cubic splines. The strength of singular forces is determined by solving a small system of equations at each time step. The Navier-Stokes equations are discretized on a staggered Cartesian grid by a second order accurate projection method for pressure and velocity. / Singapore-MIT Alliance (SMA)
3

Um método de interface imersa de alta ordem para a resolução de equações elípticas com coeficientes descontínuos / A high-order immersed interface method for solving elliptic equations with discontinuous coefficients

Marilaine Colnago 23 November 2017 (has links)
Problemas de interface do tipo elípticos são frequentemente encontrados em dinâmicas de fluidos, ciências dos materiais, mecânica e outros campos de estudo. Em particular, o clássico Método de Interface Imersa (IIM) figura como uma das abordagens numéricas mais robustas para resolver problemas dessa categoria, o qual tem sido empregado recorrentemente para simular o comportamento de fluxos sobre corpos imersos em malhas cartesianas. Embora esse método seja eficiente e robusto, técnicas construídas com base no IIM impõem como restrições matemáticas diversos tipos de condições de salto na interface a fim de serem passíveis de utilização na prática. Nesta tese, introduzimos um novo método de Interface Imersa para resolver problemas elípticos com coeficientes descontínuos em malhas cartesianas. Diferentemente da maioria das formulações existentes que dependem de vários tipos de condições de salto para produzirem uma solução para o problema elíptico, o esquema aqui proposto reduz significativamente o número de restrições ao solucionar a EDP estudada, isto é, apenas os saltos de ordem zero das incógnitas devem ser fornecidos. A técnica apresentada combina esquemas de Diferenças Finitas, abordagem do Ponto Fantasma, modelos de correções e regras de interpolação em uma metodologia única e concisa. Além disso, o método proposto é capaz de produzir soluções de alta ordem, incluindo cenários onde há poucos dados disponíveis onde o quesito alta precisão é indispensável. A robustez e a precisão do método proposto são verificadas através de uma variedade de experimentos numéricos envolvendo diversos problemas elípticos com interfaces arbitrárias. Finalmente, a partir dos testes numéricos conduzidos, é possível concluir que o método projetado produz aproximações de alta ordem a partir de um número muito condensado de restrições matemáticas. / Elliptic interface problems are often encountered in fluid dynamics, material sciences, mechanics and other relevant fields of study. In particular, the well-known Immersed Interface Method (IIM) figures among the most effective approaches for solving non-trivial problems, where the method is traditionally used to simulate the flow behavior over complex bodies immersed in a cartesian mesh. Although their powerfulness and versatility, techniques that are built in light of the IIM impose as constraints different types of jump conditions at the interface in order to be properly managed and applicable for specific purposes. In this thesis, we introduce a novel Immersed Interface Method for solving Elliptic problems with discontinuous coefficients on cartesian grids. Different from most existing formulations that rely on various jump conditions types to get a valid solution, the present scheme reduces significatively the number of constraints when solving the PDE problem, i.e., only the ordinary jumps of the unknowns are required to be given, a priori. Our technique combines Finite Difference schemes, Ghost node strategy, correction models, and interpolation rules into a unified and concise methodology. Moreover, the method is capable of producing high-order solutions, succeeding in many practical scenarios with little available data wherein high precision is indispensable. We attest the robustness and the accuracy of the proposed method through a variety of numerical experiments involving several Elliptic problems with arbitrary interfaces. Finally, from the conducted numerical tests, we verify that the designed method produces high-order approximations from a very limited number of valid jump constraints.
4

Análise de desempenho de um método de interfaces imersas de alta ordem / Performance analysis of a high order immersed interface method

Paino, Paulo Celso Vieira 15 April 2011 (has links)
No contexto de Dinâmica de Fluidos Computacional, métodos de simulação de objetos imersos em Malhas Cartesianas têm se mostrado vantajosos tanto em termos de Custo Computacional quanto em termos de precisão numérica. Entretanto, a representação física de objetos imersos nesses domínios computacionais impõe a perda de validade dos esquemas de Diferenças Finitas empregados, na região das superfícies introduzidas. Este trabalho analisa um Método de Interfaces Imersas quanto ao desempenho em aplicações a esquemas de solução numérica de Alta Ordem de precisão. Através de Testes de Refinamento de Malha, é feita a apreciação da ordem de decaimento dos erros das soluções numéricas em comparação com as soluções analíticas para 2 problemas unidimensionais. O primeiro envolve a solução da Equação de Calor unidimensional sujeita a uma Condição Inicial Unitária, e o segundo relaciona-se ao cálculo das duas primeiras derivadas espaciais das funções analíticas Seno e Tangente Hiperbólica. Também é promovida uma análise de forma fragmentária do método, a fim de individualizar a contribuição dos elementos envolvidos no comportamento das soluções geradas. Os resultados obtidos indicam eventuais alterações na ordem de precisão dos esquemas de Diferenças Finitas originalmente aplicados. Esse comportamento e visto como uma dependência que o método escolhido apresenta em relação a função discretizada. Por fim, são elaboradas considerações sobre restrições de aplicabilidade do método escolhido. / In the Computational Fluid Dynamics context, methods for simulating immersed objects in Cartesian Grids have shown advantages regarding both Computational Cost and numerical precision. Nevertheless, the physical representation of immersed objects within these computational domains leads to the loss of validity of the emplyed Finite Dierence Schemes near the immersed surfaces. This work analizes a Immersed Interface Method regarding its performance in High Order Schemes applications. The error decay order for numerical solutions of two 1D problems is observed. The rst problem relates to the solution of the Heat Equation subjected to the unitary initial condition. The second relates to the computation of the rst two derivatives of analytical functions Sin and Hyperbolic Tangent. It\'s also conducted a fragmentary analysis, which is intended to identify the contribution of each element of this method to the character of the generated solution. The results indicate some eventual changes in the Order of the Finite Dierences Schemes employed. This behaviour is regarded as a dependency of this method to the nature of the discretized function. Finaly, some remarks regarding restrictions to this method\'s applicability are made.
5

Análise de desempenho de um método de interfaces imersas de alta ordem / Performance analysis of a high order immersed interface method

Paulo Celso Vieira Paino 15 April 2011 (has links)
No contexto de Dinâmica de Fluidos Computacional, métodos de simulação de objetos imersos em Malhas Cartesianas têm se mostrado vantajosos tanto em termos de Custo Computacional quanto em termos de precisão numérica. Entretanto, a representação física de objetos imersos nesses domínios computacionais impõe a perda de validade dos esquemas de Diferenças Finitas empregados, na região das superfícies introduzidas. Este trabalho analisa um Método de Interfaces Imersas quanto ao desempenho em aplicações a esquemas de solução numérica de Alta Ordem de precisão. Através de Testes de Refinamento de Malha, é feita a apreciação da ordem de decaimento dos erros das soluções numéricas em comparação com as soluções analíticas para 2 problemas unidimensionais. O primeiro envolve a solução da Equação de Calor unidimensional sujeita a uma Condição Inicial Unitária, e o segundo relaciona-se ao cálculo das duas primeiras derivadas espaciais das funções analíticas Seno e Tangente Hiperbólica. Também é promovida uma análise de forma fragmentária do método, a fim de individualizar a contribuição dos elementos envolvidos no comportamento das soluções geradas. Os resultados obtidos indicam eventuais alterações na ordem de precisão dos esquemas de Diferenças Finitas originalmente aplicados. Esse comportamento e visto como uma dependência que o método escolhido apresenta em relação a função discretizada. Por fim, são elaboradas considerações sobre restrições de aplicabilidade do método escolhido. / In the Computational Fluid Dynamics context, methods for simulating immersed objects in Cartesian Grids have shown advantages regarding both Computational Cost and numerical precision. Nevertheless, the physical representation of immersed objects within these computational domains leads to the loss of validity of the emplyed Finite Dierence Schemes near the immersed surfaces. This work analizes a Immersed Interface Method regarding its performance in High Order Schemes applications. The error decay order for numerical solutions of two 1D problems is observed. The rst problem relates to the solution of the Heat Equation subjected to the unitary initial condition. The second relates to the computation of the rst two derivatives of analytical functions Sin and Hyperbolic Tangent. It\'s also conducted a fragmentary analysis, which is intended to identify the contribution of each element of this method to the character of the generated solution. The results indicate some eventual changes in the Order of the Finite Dierences Schemes employed. This behaviour is regarded as a dependency of this method to the nature of the discretized function. Finaly, some remarks regarding restrictions to this method\'s applicability are made.
6

La méthode IIM pour une membrane immergée dans un fluide incompressible

Morin-Drouin, Jérôme 02 1900 (has links)
La méthode IIM (Immersed Interface Method) permet d'étendre certaines méthodes numériques à des problèmes présentant des discontinuités. Elle est utilisée ici pour étudier un fluide incompressible régi par les équations de Navier-Stokes, dans lequel est immergée une membrane exerçant une force singulière. Nous utilisons une méthode de projection dans une grille de différences finies de type MAC. Une dérivation très complète des conditions de saut dans le cas où la viscosité est continue est présentée en annexe. Deux exemples numériques sont présentés : l'un sans membrane, et l'un où la membrane est immobile. Le cas général d'une membrane mobile est aussi étudié en profondeur. / The Immersed Interface Method allows us to extend the scope of some numerical methods to discontinuous problems. Here we use it in the case of an incompressible fluid governed by the Navier-Stokes equations, in which a membrane is immersed, inducing a singular force. We use a projection method and staggered (MAC-type) finite difference approximations. A very complete derivation for the jump conditions is presented in the Appendix, for the case where the viscosity is continuous. Two numerical examples are shown : one without a membrane, and the other where the membrane is motionless. The general case of a moving membrane is also thoroughly studied.
7

Méthode d'interface immergée pour la simulation directe de l'atomisation primaire / Immersed interface method for the direct numerical simulation of the primary atomization

Marter-Lagrange, Isabelle 12 December 2017 (has links)
La réduction des émissions polluantes et l'amélioration des performances des turboréacteurs nécessitent une connaissance détaillée des phénomènes physiques mis en jeu dans une chambre de combustion. L'atomisation du carburant résulte du cisaillement engendré par un fort écoulement d'air généré dans l'injecteur. La simulation numérique directe d'écoulements avec interface permet de simuler l'ensemble du processus d'atomisation. L'utilisation de maillages Cartésiens permet la réalisation de calculs HPC efficaces et précis. Mais, une des complexités de l'atomisation vient d'une interaction forte entre le comportement de la nappe liquide et l'écoulement gazeux dans les conduites de l'injecteur, rendant impératif la simulation de l'injecteur complet. Ceci étant impossible avec des maillages Cartésiens structurés, l'objectif de cette thèse est de développer une méthode d'interface immergée permettant l'inclusion d'objets solides dans un domaine de calcul, indépendamment du maillage, afin de réaliser des DNS du système d'injection complet. Les équations de Navier-Stokes incompressibles diphasiques sont résolues à l'aide d'un algorithme de projection, l'interface liquide-gaz étant transportée avec une méthode CLSVOF conservative en masse et quantité de mouvement. La présence du solide est prise en compte grâce à la méthode d'interface immergée. Cette méthode a été appliquée à la simulation numérique de nappes liquides cisaillées pour une configuration d'injecteur utilisée en essais à l'ONERA et a permis une meilleure prédiction de la fréquence de battement de la nappe. / The reduction of polluting emissions and improvement of aeronautical engines efficiency depends on the detailed knowledge of the physical phenomena encountered in a combustion chamber. Fuel atomization results from the shearing effect induced by the high velocity airflow generated inside the injector. The Direct Numerical Simulation of interfacial flows allows the simulation of the whole atomization process, while Cartesian structured meshes allows efficient and accurate HPC computations. However, the complexity of atomization comes from a strong interaction between the jet behavior and the injector internal flow, which makes essential to simulate the whole injector system. As that is impossible on Cartesian structured grids, the main objective of this thesis is to develop an Immersed Interface Method (IIM) allowing the inclusion of solid objects in the computational domain, independently of the mesh. The incompressible two-phases Navier-Stokes equations are solved using a projection algorithm with the CLSVOF method, conservative in mass and momentum. The solid presence is taken into account using the IIM. The proposed IIM has been applied to the numerical simulation of sheared liquid sheets corresponding to an ONERA experimental configuration and allows a better prediction of the flapping frequencies of the liquid sheet.
8

La méthode IIM pour une membrane immergée dans un fluide incompressible

Morin-Drouin, Jérôme 02 1900 (has links)
La méthode IIM (Immersed Interface Method) permet d'étendre certaines méthodes numériques à des problèmes présentant des discontinuités. Elle est utilisée ici pour étudier un fluide incompressible régi par les équations de Navier-Stokes, dans lequel est immergée une membrane exerçant une force singulière. Nous utilisons une méthode de projection dans une grille de différences finies de type MAC. Une dérivation très complète des conditions de saut dans le cas où la viscosité est continue est présentée en annexe. Deux exemples numériques sont présentés : l'un sans membrane, et l'un où la membrane est immobile. Le cas général d'une membrane mobile est aussi étudié en profondeur. / The Immersed Interface Method allows us to extend the scope of some numerical methods to discontinuous problems. Here we use it in the case of an incompressible fluid governed by the Navier-Stokes equations, in which a membrane is immersed, inducing a singular force. We use a projection method and staggered (MAC-type) finite difference approximations. A very complete derivation for the jump conditions is presented in the Appendix, for the case where the viscosity is continuous. Two numerical examples are shown : one without a membrane, and the other where the membrane is motionless. The general case of a moving membrane is also thoroughly studied.
9

Time-domain numerical modeling of poroelastic waves : the Biot-JKD model with fractional derivatives

Blanc, Emilie 05 December 2013 (has links)
Une modélisation numérique des ondes poroélastiques, décrites par le modèle de Biot, est proposée dans le domaine temporel. La dissipation visqueuse à l'intérieur des pores est décrite par le modèle de perméabilité dynamique de Johnson-Koplik-Dashen (JKD). Certains coefficients du modèle de Biot-JKD sont proportionnels à la racine carrée de la fréquence, introduisant dans le domaine temporel des dérivées fractionnaires décalées d'ordre 1/2, revenant à un produit de convolution. Basé sur une représentation diffusive, le produit de convolution est remplacé par un nombre fini de variables de mémoire satisfaisant une équation différentielle ordinaire locale en temps, menant au modèle de Biot-DA (diffusive approximation). Les propriétés des deux modèles sont analysées : hyperbolicité, décroissance de l'énergie, dispersion. On montre que la meilleure méthode de détermination des coefficients de l'approximation diffusive - quadratures de Gauss, optimisation linéaire ou non-linéaire sur la plage de fréquence d'intérêt - est l'optimisation non-linéaire. Une méthode de splitting est utilisée numériquement : la partie propagative est discrétisée par un schéma aux différences finies ADER d'ordre 4, et la partie diffusive est intégrée exactement. Les conditions de saut aux interfaces sont discrétisées avec une méthode d'interface immergée. Des simulations numériques sont présentées pour des milieux isotropes et isotropes transverses. Des comparaisons avec des solutions analytiques montrent l'efficacité et la précision de cette approche. Des simulations numériques en milieux complexes sont réalisées : influence de la porosité d'os spongieux, diffusion multiple en milieu aléatoire. / A time-domain numerical modeling of Biot poroelastic waves is proposed. The viscous dissipation in the pores is described using the dynamic permeability model of Johnson-Koplik-Dashen (JKD). Some of the coefficients in the Biot-JKD model are proportional to the square root of the frequency: in the time-domain, these coefficients introduce shifted fractional derivatives of order 1/2, involving a convolution product. Based on a diffusive representation, the convolution product is replaced by a finite number of memory variables that satisfy local-in-time ordinary differential equations, resulting in the Biot-DA (diffusive approximation). The properties of the two models are analyzed: hyperbolicity, decrease of energy, dispersion. To determine the coefficients of the diffusive approximation, different methods of quadrature are analyzed: Gaussian quadratures, linear or nonlinear optimization procedures in the frequency range of interest. The nonlinear optimization is shown to be the best way of determination. A splitting strategy is applied numerically: the propagative part is discretized using a fourth-order ADER scheme on a Cartesian grid, and the diffusive part is solved exactly. An immersed interface method is implemented to discretize the jump conditions at interfaces. Numerical experiments are presented for isotropic and transversely isotropic media. Comparisons with analytical solutions show the efficiency and the accuracy of this approach. Some numerical experiments are performed in complex media: influence of the porosity of a cancellous bone, multiple scattering across a set of random scatterers.
10

Méthodes de domaines fictifs d'ordre élevé pour les équations elliptiques et de Navier-Stokes. Application au couplage fluide-structure

Sarthou, Arthur 03 November 2009 (has links) (PDF)
La simulation de cas réalistes d'écoulements ou de transferts thermiques implique souvent l'utilisation d'obstacles ou d'interfaces de forme complexe. De part leur manque de flexibilité, les maillages structurés ne sont pas initialement adaptés au traitement d'interfaces irrégulières, ces dernières coïncidant rarement avec les lignes du maillage. Afin de permettre à l'approche structurée de traiter des interfaces complexes avec précision, des méthodes dites de domaines fictifs sont nécessaires. La première contribution de cette thèse est une nouvelle méthode de travail sur maillage curviligne structuré qui permet de réutiliser de nombreuses méthodes fonctionnant initialement sur des maillages cartésiens sur maillages curvilignes. Nous avons ensuite mis au point deux nouvelles méthodes de domaines fictifs : la méthode de pénalisation de sous-maille (PSM) pour la gestion des frontières immergées pour les équations elliptiques et de Navier-Stokes et la méthode d'interface immergée algébrique (IIA) pour les problèmes d'interfaces immergées pour les équations elliptiques. L'un des intérêts de ces deux méthodes à l'ordre deux en espace est leur simplicité. Ces différents développements ont finalement été appliqués à des cas de couplage fluide-structure académiques et réalistes (sédimentation d'un cylindre, hydroplanage d'un pneu, écoulements dans une tête de forage et convection naturelle dans la grotte de Lascaux).

Page generated in 0.4945 seconds