Spelling suggestions: "subject:"impedance spectroscopy"" "subject:"mpedance spectroscopy""
101 |
Entwicklung elektrochemischer Biosensoren für die TumordiagnostikSteude, Anja 01 February 2013 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit der Entwicklung und Anwendung elektrochemischer Biosensoren zur Erweiterung oder zum Ersatz herkömmlicher Diagnostikverfahren. Als Basis für die Biosensoren wurden Elektrodenarraychips entworfen und im Reinraum gefertigt. Die als 9WPtE bezeichneten Elektrodenarrays waren aus 3 x 3 Elektrodenpaaren im 96-well-Maßstab (ANSI-Standard) aufgebaut. Jedes Elektrodenpaar bestand aus einer kreisrunden Arbeitselektrode mit einem Durchmesser von 1,9 mm und einer Gegenelektrode als offenem Kreisring um die Arbeitselektrode mit einem Durchmesser von 7 mm. Außerhalb des Reinraums wurden separate Messkammern und Ag/AgCl-Referenzelektroden integriert. Sowohl das Referenzsystem als auch die Signalqualität der 9WPtE-Elektrodenarraychips wurden mittels Zyklovoltammetrie, Impedanzspektroskopie und Rasterkraftmikroskopie analysiert und anhand dieser Untersuchungen optimiert. Das Augenmerk lag hierbei auf den Produktionsprozessen zur Herstellung der Elektrodenarraychips, auf den Elektrolytbedingungen für die elektrochemischen Messungen und auf der Recyclebarkeit der Chips. Die Funktionalisierung der Arbeitselektroden der 9WPtE-Chips erfolgte mit sich selbst-organisierenden Schichten aus Thiolen. An die Thiole wurden mittels Chemoligation die biologischen Erkennungskomponenten kovalent gekoppelt. Mit dem 9WPtE-Elektrodenarray wurde auf diese Weise ein funktionsfähiger kompetitiver Immunosensoren gegen den Tumormarker Tenascin C entwickelt. Außerdem wurden der 9WPtE-Chip und ein zusätzlich entwickelter Durchflusssensor, basierend auf dem Prinzip des 9WPtE, genutzt, um die Möglichkeit der Detektion ganzer eukaryotischer Zellen zu untersuchen.
|
102 |
Localization of metal ions in DNADinsmore, Michael John 28 April 2008
<p class=MsoNormal style='text-align:justify;text-indent:.5in;line-height:150%'><span
style='mso-bidi-font-weight:bold'>M-DNA is a novel complex formed between DNA
and transition metal ions under alkaline conditions.<span
style='mso-spacerun:yes'> </span>The unique properties of M-DNA were
manipulated in order to rationally place metal ions at specific regions within
a double-stranded DNA helix.<span style='mso-spacerun:yes'>
</span>Investigations using thermal denaturation profiles and the ethidium
fluorescence assay illustrate that the pH at which M-DNA formation occurs is
influenced heavily by the DNA sequence and base composition.<span
style='mso-spacerun:yes'> </span>For instance, DNA with a sequence consisting
of poly[d(TG)d(CA)] is completely converted to M-DNA at pH 7.9 while DNA consisting
entirely of poly[d(AT)] remains in the B-DNA conformation until a pH of 8.6 is
reached.<span style='mso-spacerun:yes'> </span>The pH at which M-DNA formation
occurs is further decreased by the incorporation of 4-thiothymine (s<sup>4</sup>T).<span
style='mso-spacerun:yes'> </span>DNA oligomers with a mixed sequence composed
of </span>half d(AT) and the other half d(TG)d(CA)<span style='mso-bidi-font-weight:
bold'> showed that only 50% of the DNA is able to incorporate Zn<sup>2+</sup>
ions at pH 7.9.<span style='mso-spacerun:yes'> </span>This suggests that only
regions corresponding to the tracts of <span class=GramE>d(</span>TG)d(CA) are
being transformed.<span style='mso-spacerun:yes'> </span><o:p></o:p></span></p>
<p class=MsoNormal style='text-align:justify;text-indent:.5in;line-height:150%'><span
style='mso-fareast-language:ZH-CN'>Duplex DNA monolayers were self-assembled on
gold through <span class=GramE>a</span> Au-S linkage and both B- and M-DNA
conformations were studied using X-ray photoelectron spectroscopy (XPS) in
order to better elucidate the location of the metal ions.<span
style='mso-spacerun:yes'> </span>The film thickness, density, elemental
composition and ratios for samples were analyzed and compared.<span
style='mso-spacerun:yes'> </span>The DNA surface coverage, calculated from
both XPS and electrochemical measurements, was <span class=GramE>approximately
1.2 x 10<sup>13 </sup>molecules/cm<sup>2</sup></span><sub> </sub>for
B-DNA.<span style='mso-spacerun:yes'> </span>All samples showed distinct peaks
for C 1s, O 1s, N 1s, P 2p and S 2p as expected for a thiol-linked DNA.<span
style='mso-spacerun:yes'> </span></span><span style='mso-bidi-font-weight:
bold'>On addition of Zn<sup>2+</sup> to form M-DNA the C 1s, P 2p and S 2p
showed only small changes </span><span style='mso-fareast-language:ZH-CN'>while
both the N 1s and O 1s spectra changed considerably.<span
style='mso-spacerun:yes'> </span>This result is consistent with Zn<sup>2+</sup>
interacting with oxygen on the phosphate backbone as well as replacing the
imino protons of thymine (T) and guanine (G) in M-DNA.<span
style='mso-spacerun:yes'> </span>Analysis of the Zn 2p spectra also
demonstrated that the concentration of Zn<sup>2+</sup> present under M-DNA
conditions is consistent with Zn<sup>2+</sup> binding to both the phosphate
backbone as well as replacing the imino protons of T or G in each base
pair.<span style='mso-spacerun:yes'> </span>After the M-DNA monolayer is
washed with a buffer containing only Na<sup>+</sup> the Zn<sup>2+</sup> bound
to the phosphate backbone is removed while the Zn<sup>2+</sup> bound internally
still remains. </span><span style='mso-bidi-font-weight:bold'>Variable angle x-ray
photoelectron spectroscopy (VAXPS) was also used to examine monolayers
consisting of mixed sequence oligomers.<span style='mso-spacerun:yes'>
</span>Preliminary results suggest that under M-DNA conditions, the zinc to
phosphate ratio changes relative to the position of the <span class=GramE>d(</span>TG)d(CA)
tract being at the top or bottom of the monolayer.<span
style='mso-spacerun:yes'> </span><span style='mso-spacerun:yes'> </span><o:p></o:p></span></p>
<p class=MsoNormal style='text-align:justify;text-indent:.5in;line-height:150%'><span
style='mso-bidi-font-weight:bold'>Electrochemistry was also used to investigate
the properties of M-DNA monolayers on gold and examine how the localization of
metal ions affects the resistance through the DNA monolayer.<span
style='mso-spacerun:yes'> </span>T</span>he effectiveness of using the IrCl<sub>6</sub><sup>2-/3-
</sup>redox couple to investigate DNA monolayers and the potential advantages
of this system over the standard Fe(CN)<sub>6</sub><sup>3-/4-</sup> redox
couple are demonstrated.<span style='mso-spacerun:yes'> </span>B-DNA
monolayers were converted to M-DNA by incubation in buffer containing 0.4 mM Zn<sup>2+</sup>
at pH 8.6 and studied by cyclic voltammetry (CV), electrochemical impedance
spectroscopy (EIS) and chronoamperometry (CA) with IrCl<sub>6</sub><sup>2-/3-</sup>.<span
style='mso-spacerun:yes'> </span><sup><span style='mso-spacerun:yes'> </span></sup>Compared
to B-DNA, M-DNA showed significant changes in CV, EIS and CA spectra.<span
style='mso-spacerun:yes'> </span>However, only small changes were observed
when the monolayers were incubated in Mg<sup>2+ </sup>at pH 8.6 or in Zn<sup>2+</sup>
at pH 6.0.<span style='mso-spacerun:yes'> </span>The heterogeneous
electron-transfer rate (<i style='mso-bidi-font-style:normal'>k</i><sub>ET</sub>)
between the redox probe and the surface of a bare gold electrode was determined
to be 5.7 x 10<sup>-3</sup> cm/s.<span style='mso-spacerun:yes'> </span>For a
B-DNA modified electrode, the <i style='mso-bidi-font-style:normal'>k</i><sub>ET</sub>
through the monolayer was too slow to be measured.<span
style='mso-spacerun:yes'> </span>However, under M-DNA conditions, a <i
style='mso-bidi-font-style:normal'>k</i><sub>ET</sub> of 1.5 x 10<sup>-3</sup>
cm/s was reached.<span style='mso-spacerun:yes'> </span>As well, the percent
change in resistance to charge transfer (R<sub>CT</sub>), measured by EIS, <span
class=GramE>was</span> used to illustrate the dependence of M-DNA formation on
pH.<span style='mso-spacerun:yes'> </span>This result is consistent with Zn<sup>2+</sup>
ions replacing the imino protons on thymine and guanine residues.<span
style='mso-spacerun:yes'> </span>Also, at low pH values, the percent change in
R<sub>CT</sub> seems to be greater for <span class=GramE><span
style='mso-bidi-font-weight:bold'>d(</span></span><span style='mso-bidi-font-weight:
bold'>TG)<sub>15</sub>d(CA)<sub>15</sub> compared to oligomers with mixed
d(AT) and d(TG)d(CA) tracts.<span style='mso-spacerun:yes'> </span></span>The
IrCl<sub>6</sub><sup>2-/3- </sup>redox couple was also effective in
differentiating between single-stranded and double-stranded DNA during
dehybridization and rehybridization experiments.<span
style='mso-spacerun:yes'> </span><span style='mso-bidi-font-weight:bold'><o:p></o:p></span></p>
|
103 |
Localization of metal ions in DNADinsmore, Michael John 28 April 2008 (has links)
<p class=MsoNormal style='text-align:justify;text-indent:.5in;line-height:150%'><span
style='mso-bidi-font-weight:bold'>M-DNA is a novel complex formed between DNA
and transition metal ions under alkaline conditions.<span
style='mso-spacerun:yes'> </span>The unique properties of M-DNA were
manipulated in order to rationally place metal ions at specific regions within
a double-stranded DNA helix.<span style='mso-spacerun:yes'>
</span>Investigations using thermal denaturation profiles and the ethidium
fluorescence assay illustrate that the pH at which M-DNA formation occurs is
influenced heavily by the DNA sequence and base composition.<span
style='mso-spacerun:yes'> </span>For instance, DNA with a sequence consisting
of poly[d(TG)d(CA)] is completely converted to M-DNA at pH 7.9 while DNA consisting
entirely of poly[d(AT)] remains in the B-DNA conformation until a pH of 8.6 is
reached.<span style='mso-spacerun:yes'> </span>The pH at which M-DNA formation
occurs is further decreased by the incorporation of 4-thiothymine (s<sup>4</sup>T).<span
style='mso-spacerun:yes'> </span>DNA oligomers with a mixed sequence composed
of </span>half d(AT) and the other half d(TG)d(CA)<span style='mso-bidi-font-weight:
bold'> showed that only 50% of the DNA is able to incorporate Zn<sup>2+</sup>
ions at pH 7.9.<span style='mso-spacerun:yes'> </span>This suggests that only
regions corresponding to the tracts of <span class=GramE>d(</span>TG)d(CA) are
being transformed.<span style='mso-spacerun:yes'> </span><o:p></o:p></span></p>
<p class=MsoNormal style='text-align:justify;text-indent:.5in;line-height:150%'><span
style='mso-fareast-language:ZH-CN'>Duplex DNA monolayers were self-assembled on
gold through <span class=GramE>a</span> Au-S linkage and both B- and M-DNA
conformations were studied using X-ray photoelectron spectroscopy (XPS) in
order to better elucidate the location of the metal ions.<span
style='mso-spacerun:yes'> </span>The film thickness, density, elemental
composition and ratios for samples were analyzed and compared.<span
style='mso-spacerun:yes'> </span>The DNA surface coverage, calculated from
both XPS and electrochemical measurements, was <span class=GramE>approximately
1.2 x 10<sup>13 </sup>molecules/cm<sup>2</sup></span><sub> </sub>for
B-DNA.<span style='mso-spacerun:yes'> </span>All samples showed distinct peaks
for C 1s, O 1s, N 1s, P 2p and S 2p as expected for a thiol-linked DNA.<span
style='mso-spacerun:yes'> </span></span><span style='mso-bidi-font-weight:
bold'>On addition of Zn<sup>2+</sup> to form M-DNA the C 1s, P 2p and S 2p
showed only small changes </span><span style='mso-fareast-language:ZH-CN'>while
both the N 1s and O 1s spectra changed considerably.<span
style='mso-spacerun:yes'> </span>This result is consistent with Zn<sup>2+</sup>
interacting with oxygen on the phosphate backbone as well as replacing the
imino protons of thymine (T) and guanine (G) in M-DNA.<span
style='mso-spacerun:yes'> </span>Analysis of the Zn 2p spectra also
demonstrated that the concentration of Zn<sup>2+</sup> present under M-DNA
conditions is consistent with Zn<sup>2+</sup> binding to both the phosphate
backbone as well as replacing the imino protons of T or G in each base
pair.<span style='mso-spacerun:yes'> </span>After the M-DNA monolayer is
washed with a buffer containing only Na<sup>+</sup> the Zn<sup>2+</sup> bound
to the phosphate backbone is removed while the Zn<sup>2+</sup> bound internally
still remains. </span><span style='mso-bidi-font-weight:bold'>Variable angle x-ray
photoelectron spectroscopy (VAXPS) was also used to examine monolayers
consisting of mixed sequence oligomers.<span style='mso-spacerun:yes'>
</span>Preliminary results suggest that under M-DNA conditions, the zinc to
phosphate ratio changes relative to the position of the <span class=GramE>d(</span>TG)d(CA)
tract being at the top or bottom of the monolayer.<span
style='mso-spacerun:yes'> </span><span style='mso-spacerun:yes'> </span><o:p></o:p></span></p>
<p class=MsoNormal style='text-align:justify;text-indent:.5in;line-height:150%'><span
style='mso-bidi-font-weight:bold'>Electrochemistry was also used to investigate
the properties of M-DNA monolayers on gold and examine how the localization of
metal ions affects the resistance through the DNA monolayer.<span
style='mso-spacerun:yes'> </span>T</span>he effectiveness of using the IrCl<sub>6</sub><sup>2-/3-
</sup>redox couple to investigate DNA monolayers and the potential advantages
of this system over the standard Fe(CN)<sub>6</sub><sup>3-/4-</sup> redox
couple are demonstrated.<span style='mso-spacerun:yes'> </span>B-DNA
monolayers were converted to M-DNA by incubation in buffer containing 0.4 mM Zn<sup>2+</sup>
at pH 8.6 and studied by cyclic voltammetry (CV), electrochemical impedance
spectroscopy (EIS) and chronoamperometry (CA) with IrCl<sub>6</sub><sup>2-/3-</sup>.<span
style='mso-spacerun:yes'> </span><sup><span style='mso-spacerun:yes'> </span></sup>Compared
to B-DNA, M-DNA showed significant changes in CV, EIS and CA spectra.<span
style='mso-spacerun:yes'> </span>However, only small changes were observed
when the monolayers were incubated in Mg<sup>2+ </sup>at pH 8.6 or in Zn<sup>2+</sup>
at pH 6.0.<span style='mso-spacerun:yes'> </span>The heterogeneous
electron-transfer rate (<i style='mso-bidi-font-style:normal'>k</i><sub>ET</sub>)
between the redox probe and the surface of a bare gold electrode was determined
to be 5.7 x 10<sup>-3</sup> cm/s.<span style='mso-spacerun:yes'> </span>For a
B-DNA modified electrode, the <i style='mso-bidi-font-style:normal'>k</i><sub>ET</sub>
through the monolayer was too slow to be measured.<span
style='mso-spacerun:yes'> </span>However, under M-DNA conditions, a <i
style='mso-bidi-font-style:normal'>k</i><sub>ET</sub> of 1.5 x 10<sup>-3</sup>
cm/s was reached.<span style='mso-spacerun:yes'> </span>As well, the percent
change in resistance to charge transfer (R<sub>CT</sub>), measured by EIS, <span
class=GramE>was</span> used to illustrate the dependence of M-DNA formation on
pH.<span style='mso-spacerun:yes'> </span>This result is consistent with Zn<sup>2+</sup>
ions replacing the imino protons on thymine and guanine residues.<span
style='mso-spacerun:yes'> </span>Also, at low pH values, the percent change in
R<sub>CT</sub> seems to be greater for <span class=GramE><span
style='mso-bidi-font-weight:bold'>d(</span></span><span style='mso-bidi-font-weight:
bold'>TG)<sub>15</sub>d(CA)<sub>15</sub> compared to oligomers with mixed
d(AT) and d(TG)d(CA) tracts.<span style='mso-spacerun:yes'> </span></span>The
IrCl<sub>6</sub><sup>2-/3- </sup>redox couple was also effective in
differentiating between single-stranded and double-stranded DNA during
dehybridization and rehybridization experiments.<span
style='mso-spacerun:yes'> </span><span style='mso-bidi-font-weight:bold'><o:p></o:p></span></p>
|
104 |
Detecting White Layer in Hard Turned Components Using Non-Destructive MethodsHarrison, Ian Spencer 20 January 2005 (has links)
Hard turning is a machining process where a single point cutting tool removes material harder than 45 HRC from a rotating workpiece. Due to the advent of polycrystalline cubic boron nitride (PCBN) cutting tools and improved machine tool designs, hard turning is an attractive alternative to grinding for steel parts within the range of 58-68 HRC, such as bearings. There is reluctance in industry to adopt hard turning because of a defect called white layer. White layer is a hard, 1-5 쭠deep layer on the surface of the specimen that resists etching and therefore appears white on a micrograph. When aggressive cutting parameters are used, even using a new tool, white layer is expected. If more conservative parameters are selected, one does not expect white layer. There is some debate if white layer actually decreases the strength or fatigue life of a part, but nevertheless it is not well understood and therefore is avoided.
This research examines the use of two different non-destructive evaluation (NDE) sensors to detect white layer in hard turned components. The first, called a Barkhausen sensor, is an NDE instrument that works by applying a magnetic field to a ferromagnetic metal and observing the induced electrical field. The amplitude of the signal produced by the induced electrical field is affected by the hardness of the material and surface residual stresses.
This work also examines the electrochemical properties of white layer defects using electrochemical impedance spectroscopy. This idea is verified by measuring the electrochemical potential of surfaces with white layer and comparing to surfaces without any. Further corrosion tests using the electrochemical impedance spectroscopy method indicate that parts with white layer have a higher corrosion rate.
The goal of this study is to determine if it is possible to infer white layer thickness reliably using either the Barkhausen sensor or electrochemical impedance spectroscopy (EIS). Measurements from both sensors are compared with direct observation of the microstructure in order to determine if either sensor can reliably detect the presence of white layer.
|
105 |
Investigation of percolation in borosilicate glass matrix composites containing conducting segregated networksPruyn, Timothy L. 08 June 2015 (has links)
Glass matrix composites containing a conducting filler such as antimony tin oxide (ATO) or silicon carbide whiskers (SiCw) have the potential for applications such as transparent electrodes, heating elements, and electromagnetic shielding. For these applications, the composite performance is highly dependent on the microstructure of the composite and the interactions the added filler has with one another. In this research, borosilicate glass-matrix composites were fabricated using a processing method that creates segregated percolated networks at low concentrations of conducting fillers. The conducting fillers were hot pressed with the glass microspheres at temperatures near the glass transition temperature (550°C) using various pressures. Upon hot-pressing at these low temperatures, the glass microspheres deformed into faceted polyhedra and the fillers were displaced to the edges of the glass particles, resulting in percolation. The processing method used in this study was able to bypass many of the current composition and densification issues associated with the creation of percolated networks in glass composites. In some cases, the formation of these percolated networks resulted in a 12-13 orders of magnitude decrease in the resistivity. Using a non-destructive electrical measurement technique, ac impedance spectroscopy (IS), the changes in the electrical properties were tracked as the conducting networks developed. Using IS in conjunction with other techniques, correlations were made between the electrical properties, the filler interfaces, and the influence the processing parameters had on the development of the percolation networks within these composites.
|
106 |
Myoglobin Detection on SiC: Immunosensor Development for Myocardial InfarctionOliveros Villalba, Alexandra 01 January 2013 (has links)
Silicon carbide (SiC) has been around for more than 100 years as an industrial material and has found wide and varied applications because of its unique electrical and thermal properties. In recent years there has been increased attention on SiC as a viable material for biomedical applications. Among these applications are those where SiC is used as a substrate material for biosensors and biotransducers, taking advantage of its surface chemical, tribological and electrical properties.
In this work we have used the proven bio- and hema-compatibility of SiC to develop a viable biorecognition interface using SiC as the substrate material for myocardial infarction detection. The approach followed included the development of an electrochemical-based sensor in which 3C-SiC is used as the active electrode and where flat band potential energy changes are monitored after successive modification of the SiC with aminopropyltriethoxysilane, anti-myoglobin and myoglobin incubation.
We have studied the quality of self assembled monolayers obtained by surface modification of SiC using organosilanes such as aminopropyltriethoxysilane and octadecene, which is the starting point for the immobilization of cells or proteins on a substrate. We employed this technique on 6H-SiC where we were able to control the proliferation of H4 human neuroglioma and PC12 rat pheochromocytoma cells in vitro. Finally, aminopropyltriethoxysilane (APTES) was successfully used to immobilize anti-myoglobin on the 3C-SiC electrodes as demonstrated by fluorescence microscopy results. The electrical characterization of the surfaces was performed via impedance spectroscopy and by measuring changes in flat band potential using the Mott-Schottky plot technique.
Changes in flat band and impedance of the SiC/antibody/protein interface would allow us to detect changes in the space charge region of the semiconductor. However, we believe that because of the presence of surface states and different crystal defects on the 3C-SiC we did not observed repeatable results that allowed us to identify the presence of myoglobin in solution. In addition, certain modifications need to be performed to the electrochemical cell in order to confirm the presence of the myoglobin immobilized on the functionalized SiC surfaces.
|
107 |
Practical vibration evaluation and early warning of damage in post-tensioned tendonsLopez-Sabando, Jaime 01 June 2007 (has links)
Severe corrosion damage and even complete failure was recently discovered in external post-tensioned (PT) tendons of three Florida's pre-cast, segmental bridges over seawater. A key deterioration factor was the formation of large bleed water grout voids at or near the anchorages. Steel corrosion may occur at the grout-void interface or in the air space of the void itself. Since the tendons are critical to the structural integrity of the bridges, reliable and non-intrusive damage detection methods are desirable to manage or prevent future occurrences. In recent years several indirect non-destructive methods have been developed or improved to evaluate the conditions of the tendons. One of those methods is vibration-based tension measurements, consisting of detecting tendon tension loss by analyzing the tendon's natural frequencies.
Until recently, vibration-based tension measurements were costly and laborious since they required several operators to conduct the tests and complicated analysis through different programs. The first objective of this research is to provide a practical, simplified, user-friendly testing and analysis method for screening tendons by vibration measurements. Electrochemical Impedance Spectroscopy, Linear Polarization, and Electrical Resistance are alternative methods that could nondestructively detect or monitor corrosion before strand failures occur. The reliability and sensitivity of these conventional monitoring methods in solid or liquid media are well proven. However, few investigations exist on applying these methods to air-space corrosion as it may occur in tendon anchors. The second objective of this research is to establish the feasibility of using the above conventional monitoring methods for detecting air-space corrosion.
In this investigation, two different types of Electrical Resistance probes were designed and evaluated. Also, electrochemical probes were constructed simulating strands conditions in the grout-void interface. Electrochemical Impedance Spectroscopy and Linear Polarization measurements were conducted in the electrochemical probes to calculate their instantaneous corrosion rates. Electrical Resistance and Electrochemical probes results indicate that both methods provide sufficient sensibility to determine the ongoing damage.
|
108 |
Lab-on-chip design to characterize pore-spanning lipid bilayersKaufeld, Theresa 23 October 2013 (has links)
No description available.
|
109 |
Synthesis and electrochemical modulation of the actuator properties of poly(phenazine-2,3-diimino (pyrrol-2-yl)).Botha, Shanielle Veronique. January 2008 (has links)
<p>The focus of this study is to synthesize a novel hinged polymer actuator. The linking molecule (hinge) is phenazine with interconnected dipyrrole units.</p>
|
110 |
Composite Electrodes With Immobilized Bacteria Bioanode and Photosynthetic Algae Biocathode for Bio-Batteries2014 January 1900 (has links)
A novel electrode was constructed and tested in a bio-battery. This configuration consisted of a composite electrode with immobilized bacteria (Escherichia coli K-12) in the anode and a composite electrode with immobilized Carbon Nanoparticles (CNP) and algae (Chlorella vulgaris/Scenedesmus sp.) suspended in the cathode. The composite electrode consisted of three parts: a 304L stainless steel mesh base, an electro-polymerized layer of pyrrole, and an electro-polymerized layer of methylene blue. The bacteria were immobilized on the anode electrode using a technique incorporating CNP and a Teflontm emulsion. The anode and cathode electrodes were tested separately in conjunction with chemical cathodes and anodes respectively.
The composite electrode with immobilized bacteria was tested in a bioanode setup. The cathode chamber of the cell contained a potassium ferricyanide and buffer solution with a graphite electrode. Factors affecting electrode performance, such as Teflontm and carbon nanoparticle concentration, were investigated to find optimum values. The maximum power density generated by the composite electrode with immobilized bacteria and a chemical cathode was 378 mW/m2. This electrode configuration produced approximately 69% more power density and 53% more current density than composite electrodes with bacteria suspended in solution. Electrochemical Impedance Spectroscopy analysis determined that a significant portion of the bio-battery’s resistance to charge transfer occurred at the surface of the anode and this resistance was significantly lowered when using immobilized bacteria (51% lower than bio-batteries with suspended bacteria).
Similarly, biocathodes containing composite electrodes coated with CNP were tested using two algae species, Chlorella vulgaris and Scenedesmus sp., suspended in solution. This electrode configuration was compared with composite electrode without CNP coating. The anode chamber contained potassium ferrocyanide solution with a graphite counter electrode. The composite electrode with CNP produced approximately 23% more current density than composite electrode without CNP.
A complete bio-battery was designed using a composite electrode with immobilized bacteria anode and a CNP coated composite electrode with algae suspended in the cathode. EIS analysis showed that the resistance was higher in the biocathode than in the bioanode and a significant portion of the ohmic resistance was contributed by the membrane.
|
Page generated in 0.3951 seconds