• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2589
  • 481
  • 313
  • 229
  • 192
  • 176
  • 66
  • 37
  • 29
  • 22
  • 22
  • 20
  • 14
  • 13
  • 13
  • Tagged with
  • 5151
  • 1612
  • 739
  • 682
  • 651
  • 546
  • 531
  • 426
  • 395
  • 378
  • 374
  • 363
  • 352
  • 342
  • 341
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

車検制度が世帯の自動車取り替え更新行動に及ぼす影響の分析

YAMAMOTO, Toshiyuki, 北村, 隆一, KITAMURA, Ryuichi, 藤井, 宏明, FUJII, Hiroaki, 山本, 俊行 01 1900 (has links)
No description available.
392

世帯内での配分を考慮した自動車の車種選択と利用の分析

山本, 俊行, YAMAMOTO, Toshiyuki, 北村, 隆一, KITAMURA, Ryuichi, 河本, 一郎, KOHMOTO, Ichiro 04 1900 (has links)
No description available.
393

The environmental economic & social implications of the intelligent transport system in Hong Kong /

Fang, Hsiao-jung, Belinda. January 2002 (has links)
Thesis (M. Sc.)--University of Hong Kong, 2002. / Includes bibliographical references (leaves 64-65).
394

An Agent-based Coordination Strategy for Information Propagation in Connected Vehicle Systems

Li, Xin January 2014 (has links)
Context. Connected vehicles use sensors such as cameras or radars to collect data about surrounding environments automatically and share these data with each other or with road side infrastructure using short-range wireless communication. Due to the large amount of information generated, strategies are required to minimize information redundancy when important information is propagated among connected vehicles. Objectives. This research aims to develop an information propagation strategy in connected vehicle systems using software agent-based coordination strategies to reduce unnecessary message broadcast and message propagation delay. Methods. A review of related work is used to acquire a deep insight as well as knowledge of the state-of-the-art and the state-of-practice from relevant studies in the subject area. Based on the review of related work, we propose an agent-based coordination strategy for information propagation in connected vehicle systems, in which connected vehicles coordinate their message broadcast activities using auctions. After that, a simulation experiment is conducted to evaluate the proposed strategy by comparing it with existing representative strategies. Results. Results of simulation experiments and statistical tests show that the proposed agent-based coordination strategy manifest some improvements in reducing unnecessary message broadcast and message propagation delay compared to other strategies involved in the simulation experiments. Conclusions. In this research, we suggest a new strategy to manage the propagation of information in connected vehicle systems. According to the small scale simulation analysis, the use of auctions to select message transmitters enables our proposed strategy to achieve some improvements in reducing unnecessary message broadcast and propagation delay than existing strategies. Thus, with the help of our proposed strategy, unnecessary message broadcast can be minimized and the communication resources of connected vehicle systems can be utilized effectively. Also, important safety messages can be propagated to drivers faster, negative traffic events could be averted. / 0707708513
395

Robust High Speed Autonomous Steering of an Off-Road Vehicle

Kapp, Michael January 2015 (has links)
A ground vehicle is a dynamic system containing many non-linear components, ranging from the non-linear engine response to the tyre-road interface. In pursuit of developing driver-assist systems for accident avoidance, as well as fully autonomous vehicles, the application of modern mechatronics systems to vehicles are widely investigated. Extensive work has been done in an attempt to model and control the lateral response of the vehicle system utilising a wide variety of conventional control and intelligent systems theory. The majority of driver models are however intended for low speed applications where the vehicle dynamics are fairly linear. This study proposes the use of adaptive control strategies as robust driver models capable of steering the vehicle without explicit knowledge of vehicle parameters. A Model Predictive Controller (MPC), self-tuning regulator and Linear Quadratic Self-Tuning Regulator (LQSTR) updated through the use of an Auto Regression with eXogenous input (ARX) model that describes the relation between the vehicle steering angle and yaw rate are considered as solutions. The strategies are evaluated by performing a double lane change in simulation using a validated full vehicle model in MSC ADAMS and comparing the maximum stable speed and lateral offset from the required path. It is found that all the adaptive controllers are able to successfully steer the vehicle through the manoeuvre with no prior knowledge of the vehicle parameters. An LQSTR proves to be the best adaptive strategy for driver model applications, delivering a stable response well into the non-linear tyre force regime. This controller is implemented on a fully instrumented Land Rover 110 of the Vehicle Dynamics Group at the University of Pretoria fitted with a semi-active spring-damper suspension that can be switched between two discrete setting representing opposite extremes of the desired response namely: ride mode (soft spring and low damping) and handling mode (stiff spring and high damping). The controller yields a stable response through a severe double lane change (DLC) up to the handling limit of the vehicle, safely completing the DLC at a maximum speed of 90 km/h all suspension configurations. The LQSTR also proves to be robust by following the same path for all suspension configurations through the manoeuvre for vehicle speeds up to 75 km/h. Validation is continued by successfully navigating the Gerotek dynamic handling track, as well as by performing a DLC manoeuvre on an off-road terrain. The study successfully developed and validated a driver model that is robust against variations in vehicle parameters and friction coefficients. / Dissertation (MEng)--University of Pretoria, 2015. / Mechanical and Aeronautical Engineering / Unrestricted
396

Design obojživelného záchranářského vozidla / Design of amphibious rescue Vehicle

Lajda, Matúš January 2017 (has links)
This diploma thesis is concerned with design of amphibious rescue vehicle. The aim of this work is to design external shape of the vehicle and to create a modul container which fullfills technical, contructional, ergonomic and aestethic features of the vehicle. The work is meant to show variety of new shapes of amphibious vehicles and the advancement from former shapes towards newer and more suitable ones.
397

Faults and their influence on the dynamic behaviour of electric vehicles

Wanner, Daniel January 2013 (has links)
The increase of electronics in road vehicles comes along with a broad variety of possibilitiesin terms of safety, handling and comfort for the users. A rising complexityof the vehicle subsystems and components accompanies this development and has tobe managed by increased electronic control. More potential elements, such as sensors,actuators or software codes, can cause a failure independently or by mutually influencingeach other. There is a need of a structured approach to sort the faults from avehicle dynamics stability perspective.This thesis tries to solve this issue by suggesting a fault classification method and faulttolerantcontrol strategies. Focus is on typical faults of the electric driveline and thecontrol system, however mechanical and hydraulic faults are also considered. Duringthe work, a broad failure mode and effect analysis has been performed and the faultshave been modeled and grouped based on the effect on the vehicle dynamic behaviour.A method is proposed and evaluated, where faults are categorized into different levelsof controllability, i. e. levels on how easy or difficult it is to control a fault for the driver,but also for a control system.Further, fault-tolerant control strategies are suggested that can handle a fault with acritical controllability level. Two strategies are proposed and evaluated based on thecontrol allocation method and an electric vehicle with typical faults. It is shown thatthe control allocation approaches give less critical trajectory deviation compared to noactive control and a regular Electronic Stability Control algorithm.To conclude, this thesis work contributes with a methodology to analyse and developfault-tolerant solutions for electric vehicles with improved traffic safety. / <p>QC 20131010</p>
398

Effects of Connected Vehicle Technology on Mobility and Mode Choice

Minelli, Simon 11 1900 (has links)
Connected vehicle is a fully connected transportation system in which vehicles, infrastructure, and mobile devices are enabled to exchange information in real-time to bring advancements in transportation operations. It is important to incorporate the new characteristics of the connected vehicle in the transportation planning process. Also, it is vital for planning and road agencies to better understand the impacts of connected vehicle on transportation networks, system demand, and travel behavior of road users in order to properly prepare for them. In addition, developers of connected vehicle systems can gain insight into how their systems will impact road users and network performance. When a change in performance of a transportation network occurs it can potentially cause users to change travel modes, known as mode choice. In this research, the change in mode choice, due to the change in network performance by introduction of connected vehicle is studied. This provides a more accurate depiction of the performance of the network and indicates how connected vehicles could change travellers’ preference in travel mode. The effect of this technology is explored on the performance of the Toronto waterfront, in a microsimulation environment. The results show that average travel time increases for high market penetrations when a dynamic route guidance algorithm is implemented, a phenomenon that occurs in dense, and complex traffic networks. Analysis of mode choice shows a loss in the auto mode share, for high market penetrations, due to the increased auto travel times. This loss in the auto mode share is compensated by increases in the other modes. / Thesis / Master of Applied Science (MASc)
399

A STRATEGY TO BLEND SERIES AND PARALLEL MODES OF OPERATION IN A SERIES-PARALLEL 2-BY-2 HYBRID DIESEL/ELECTRIC VEHICLE

Picot, Nathan M. January 2007 (has links)
No description available.
400

Assessment of Vehicle-to-Vehicle Communication based Applications in an Urban Network

Kim, Taehyoung 23 June 2015 (has links)
Connected Vehicle research has emerged as one of the highest priorities in the transportation systems because connected vehicle technology has the potential to improve safety, mobility, and environment for the current transportation systems. Various connected vehicle based applications have been identified and evaluated through various measurements to assess the performance of connected vehicle applications. However, most of these previous studies have used hypothetical study areas with simple networks for connected vehicle environment. This study represents connected vehicle environment in TRANSIMS to assess the performance of V2V communication applications in the realistic urban network. The communication duration rate and spatial-temporal dispersion of equipped vehicles are investigated to evaluate the capability of V2V communication based on the market penetration rate of equipped vehicles and wireless communication coverage in the whole study area. The area coverage level is used to assess the spatial-temporal dispersion of equipped vehicles for two study areas. The distance of incident information propagation and speed estimation error are used to measure the performance of event-driven and periodic applications based on different market penetration rates of equipped vehicles and wireless communication coverage in both morning peak and non-peak times. The wireless communication coverage is the major factor for event-driven application and the market penetration rate of equipped vehicles has more impact on the performance of periodic application. The required minimum levels of deployment for each application are determined for each scenario. These study findings will be useful for making decisions about investments on deployment of connected vehicle applications to improve the current transportation systems. Notably, event-driven applications can be reliably deployed in the initial stage of deployment despite the low level of market penetration of equipped vehicles. / Ph. D.

Page generated in 0.0759 seconds