• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Laser de baixa intensidade e scaffold de Biosilicato®: efeitos isolados e da associação das duas modalidades terapêuticas no reparo ósseo

Rossi, Karina Nogueira Zambone Pinto 02 December 2011 (has links)
Made available in DSpace on 2016-06-02T19:02:41Z (GMT). No. of bitstreams: 1 3965.pdf: 3863042 bytes, checksum: f995d87531cc46a186a0c566c0be57ea (MD5) Previous issue date: 2011-12-02 / This study aimed to evaluate the effects of low intensity laser therapy (LLLT) (830nm, 120J/cm2, 100mW) and implantation of Biosilicate® scaffolds, associated or not, in histological aspects, biomechanical properties of the bone callus and immunoexpression of proteins, growth and transcription factors related to different stages of bone repair, at 15, 30 and 45 days after surgery of bone defects induced in the tibia.of rats. For this, three studies were performed in which a total of one hundred and twenty male Wistar rats (3 months ± 280 g) were submitted to bilateral tibial defects and randomly distributed in four experimental groups with 30 animals each. In the first study the effects of the implantation of Biosilicate® scaffolds in bone defects of rats were investigated in two groups: bone defect group (GC) and bone defect treated with Biosilicate® scaffold group (GB). The implantation of the scaffold was performed subsequent to surgery of bone defect. Histological analysis revealed that animals of GB showed newly formed bone better organized at 30 and 45 days after surgery. The immunohistochemical analysis demonstrated that the Biosilicate® scaffold promoted a higher expression of COX-2 on days 15 and 30 after surgery, immunostaining positive of RUNX-2 in all periods, increased expression of RANKL on day 15 and positive immunoexpression of BMP-9 on the 45th day. However, the Biosilicate® scaffold did not increase the mechanical properties of bone callus. Thus, the implantation of Biosilicate® scaffold was effective in stimulating the repair of tibial defects, however, was not able to improve their mechanical properties. In the second study, the spatialtemporal changes in the process of bone healing in defects treated with LLLT were evaluated in two groups: GC and bone defect treated with laser group (GL). The laser treatment started immediately following the surgery of bone defects and have been 8, 15 or 23 sessions with an interval of 48 hours between them. The histological and morphometric analysis revealed that the GL showed better tissue organization at 15 and 30 days after surgery, and biggest area of newly formed bone at day 15. The immunohistochemistry showed that the LLLT promoted higher expression of COX-2 at day 15, immunostaining of RUNX-2 positive in all periods, higher immunoexpression of BMP-9 on day 30 and higher immunoreactivity of RANKL at day 15. However, the LLLT did not increase the biomechanical properties of bone callus. Thus, the LLLT improved the process of bone healing, but was unable to improve its biomechanical properties. In the third study the effects of the association of LLLT with implants of Biosilicate® scaffolds in bone healing were investigated in three experimental groups: GC, GB and Biosilicate® scaffold irradiated with laser group (GBL). The implantation of the scaffold was performed following the surgery of bone defect. The laser treatment started immediately after surgery and were performed 8, 15 or 23 sessions with an interval of 48 hours between them. At 15 days after surgery, the histological analysis revealed granulation tissue and newly formed bone juxtaposed to the surface of scaffolds in GB and GBL. Thirty days after injury, the GB and GBL had better organized newly formed bone compared to the CG. At day 45 was possible to observe granulation tissue in the defects of the GBL. In the GB, the peak of immunoexpression of COX-2 occurred on the 15th day and in the GBL, on the 30th day. The GB and GBL showed positive immunoexpression of BMP-9 up to 45th day after surgery, while RANKL immunoexpression was higher in the GBL at day 30. However, 30 and 45 days after injury, the animals of GB and GBL showed statistically lower values of maximum load compared to the CG. Thus, the association of the scaffold Biosilicate® with laser irradiation has osteogenic activity during the bone repair, however, the scaffold Biosilicate® associated or not with the laser irradiation is not effective to improve mechanical properties of the bone callus. Finally, we concluded that LLLT (λ = 830 nm, 120J/cm2) and implantation of Biosilicate® scaffolds, associated or not, were effective to stimulate the bone consolidation by improving the development of newly formed bone and activating immunoexpression of proteins, growth and transcription factors related to different stages of bone healing in tibial defects in rats. However, these therapeutic modalities associated or not, were unable to improve mechanical properties of the bone callus. / Este trabalho teve como objetivo avaliar os efeitos da terapia laser de baixa intensidade (LLLT) (830nm, 120J/cm2, 100mW) e do implante de scaffolds de Biosilicato®, associados ou não, nos aspectos histológicos, propriedades biomecânicas do calo ósseo e na imunoexpressão de proteínas, fatores de crescimento e de transcrição relacionados a diferentes etapas do reparo ósseo, ao 15º, 30º e 45º dia após a cirurgia de defeitos ósseos induzidos em tíbias de ratos. Cento e vinte ratos machos da linhagem Wistar (3 meses de idade ± 280 gramas) foram submetidos a defeitos tibiais bilaterais e distribuídos aleatoriamente em 4 grupos experimentais com 30 animais cada. No primeiro estudo investigaram-se os efeitos do implante de scaffolds de Biosilicato® em defeitos ósseos de ratos, a partir de dois grupos experimentais: grupo defeito ósseo controle (GC) e grupo defeito ósseo tratado com scaffold de Biosilicato® (GB). O implante do scaffold foi realizado em seguida à cirurgia de defeito ósseo. A análise histológica revelou que os animais do GB apresentavam osso neoformado mais organizado ao 30º e 45º dia após a cirurgia. A imunoistoquímica demonstrou que o scaffold de Biosilicato® promoveu maior expressão de COX-2 nos dias 15 e 30 de após a cirurgia, imunoexpressão positiva de RUNX-2 em todos os períodos, maior expressão de RANKL no 15º dia e imunoexpressão positiva de BMP-9 no 45º dia. Porém, o scaffold de Biosilicato® não aumentou as propriedades mecânicas do calo ósseo. Assim, o implante de scaffold de Biosilicato® foi eficaz em estimular o reparo de defeitos tibiais, porém, não foi capaz de melhorar suas propriedades mecânicas. No segundo estudo, foram avaliadas as mudanças temporais-espaciais no processo de reparo ósseo em defeitos tratados com LLLT, a partir de dois grupos experimentais: GC e grupo defeito ósseo tratado com laser (GL). O tratamento com laser iniciou-se imediatamente após a cirurgia dos defeitos ósseos e realizaram-se 8, 15 ou 23 sessões, com um intervalo de 48h entre elas. As análises histológica e morfométrica revelaram que o GL apresentou melhor organização tecidual aos 15º e 30º dias após a cirurgia, e maior área de osso neoformado no 15º dia. A imunoistoquímica mostrou que a LLLT promoveu maior expressão de COX-2 no 15º dia, imunoexpressão positiva de RUNX-2 em todos os períodos avaliados, maior imunoexpressão de BMP-9 no 30º dia e maior imunorreatividade do RANKL no 15º dia. Porém, a LLLT não aumentou as propriedades biomecânicas do calo ósseo. Assim, a LLLT melhorou o processo de consolidação óssea, mas não foi capaz de melhorar suas propriedades biomecânicas. O terceiro estudo investigou os efeitos da associação da LLLT com implantes de scaffolds de Biosilicato® na consolidação óssea, a partir de três grupos experimentais: GC, GB e grupo scaffold de Biosilicato® irradiado com laser (GBL). O implante do scaffold foi realizado em seguida à cirurgia de defeito ósseo. O tratamento com laser iniciou-se imediatamente após a cirurgia e foram realizadas 8, 15 ou 23 sessões, com um intervalo de 48h entre elas. Ao 15º dia pós-lesão a análise histológica revelou tecido de granulação e osso neoformado justapostos à superfície dos scaffolds no GB e GBL. Trinta dias após a lesão, o GB e GBL apresentavam osso neoformado mais organizado em comparação ao GC. Ao 45º dia, foi possível observar tecido de granulação nos defeitos do GBL. No GB, o pico de imunoexpressão da COX-2 ocorreu no 15º dia e no GBL, no 30º dia. Os GB e GBL apresentaram imunoexpressão positiva da BMP-9 até o 45º dia após a cirurgia, enquanto que para o RANKL, a imunoexpressão foi maior no GBL no 30º dia. No entanto, 30 e 45 dias após a lesão, os animais dos GB e GBL apresentaram valores estatísticamente menores de carga máxima em comparação ao GC. Assim, a associação do scaffold de Biosilicato® com o laser exerce atividade osteogênica durante o reparo ósseo, no entanto, o scaffold de Biosilicato® associado ou não a irradiação laser não é eficaz em melhorar as propriedades mecânicas do calo ósseo. Finalmente, podemos concluir que a LLLT e o implante de scaffolds de Biosilicato®, associados ou não, foram eficazes em estimular a consolidação óssea, melhorando o desenvolvimento de osso neoformado e ativando a imunoexpressão de proteínas, fatores de crescimento e de transcrição relacionados a diferentes etapas do reparo ósseo em defeitos tibiais em ratos. No entanto, estas modalidades terapêuticas, associadas ou não, não foram capazes de melhorar as propriedades mecânicas do calo ósseo em ensaio de flexão na posição de tração.
12

Vectorisation du cisplatine via des nanoparticules à base de nucléolipides / Vectorization of cisplatin by nanoparticles based in nucleolipids

Khiati, Salim 28 October 2010 (has links)
Le cisplatine est l’un des trois agents anticancéreux les plus utilisés en chimiothérapie contre les tumeurs solides. Cependant, les doses utilisées sont limitées par des effets secondaires importants et l’existence des résistances innées ou acquises vis-à-vis de cette drogue. Ce travail vise à augmenter l’index thérapeutique du cisplatine (réduire ses effets secondaires et augmenter son activité anti-tumorale). Pour cela des nanoparticules hautement chargées en cisplatine en couche par couche à base de nucléolipides ont été préparées. Les études physico-chimiques (TEM, DLS, XPS, microscopie à fluorescence, ICP-optique) ont révélé que les nanoparticules à double couche étaient plus stables en milieu biologique par rapport aux formulations en mono-couche. Les études biologiques réalisées sur deux lignées tumorales ovariennes (IGROV1 et SKOV3) ont montré que cette formulation améliore l’activité cytotoxique du cisplatine et inhibe le développement des résistances. L’étude du mécanisme d’action (internalisation, apoptose, génotoxicité, réplication de l’ADN) a confirmé que les nanoparticules à double couche augmentent le taux de cisplatine internalisé qui, une fois libéré dans les cellules, arrête la réplication de l’ADN et induit la mort cellulaire par apoptose. Aucune toxicité intrinsèque aux nano-objets n’est observée. Les études in vivo de ces nanoparticules à double couche après injection en intraveineuse de 5, 7 et 9 mg/Kg ont révélé que cette formulation augmente la dose maximale tolérée et présente une activité anti-tumorale vis-à-vis des lignées cellulaires PROb et GV1A1. Cette stratégie d’élaboration des nanoparticules en couche par couche de nucléolipides nous a permis d’insérer des PEG avec ou sans acide folique pour le ciblage et d’introduire une deuxième drogue lipophile, le paclitaxel. Les tests in vitro (cytotoxicité, internalisation) ont montré l’intérêt de ces modifications. / Cisplatin is one of the three most commonly used anticancer drugs in chemotherapy against solid tumors. However, the doses used are limited by significant side effects and the existence of resistance. The aim of this work is to increase the therapeutic index of cisplatin. For this purpose, highly charged nucleolipids nanoparticles “layer-by-layer” of cisplatin were prepared. The physico-chemical studies (TEM, DLS, XPS, ICP, Fluorescence microscopy) revealed that the bilayer nanoparticles were more stable in biological environment compared with mono-layer formulations. Biological studies carried in two ovarian carcinoma cells lines (IGROV1 and SKOV3) showed that this formulation enhances the cytotoxic activity of cisplatin and inhibits the development of resistance. The study of the mechanism of action (internalization, apoptosis, genotoxicity, DNA replication) demonstrated the nanoparticles with double layer increases the rate of cisplatin internalized then released into the cells, stops the replication of DNA and induces cell death by apoptosis. No intrinsic toxicity of nano-objects is observed. In vivo studies of these nanoparticles double layer after intravenous injection of 5, 7 and 9 mg/Kg in the rats showed this formulation increases the maximum tolerated dose and has an antitumor activity against PROb en GV1A1 cells lines. This strategy of developing layer-by-layer nucleolipids nanoparticles allows to insert PEG with or without folic acid for targeting and introducing second drug, a lipophilic paclitaxel. In vitro study (cytotoxicity, internalization) have shown the benefits of both modification.
13

Untersuchungen zum Transfer von anorganischen und organischen Schadstoffen aus dotiertem Substrat in Gemüsepflanzen (Tomaten, Paprika)

Friedrich, Nadine 11 July 2011 (has links)
In der vorliegenden Arbeit wurde mit Hilfe von Gefäßversuchen der Transfer von ausgewählten organischen (m-Kresol, Simazin, Lindan, Anthracen, Galaxolid) und anorganischen Umweltschadstoffen (As, Cd, Pb, Cr, Zn, Ni) aus dotiertem Substrat in Nutzpflanzen (Tomaten, Paprika) untersucht. Zum besseren Verständnis des Schadstofftransfers der organischen Verbindungen und als Möglichkeit einer kosten- und zeitsparenden Alternative zu den herkömmlichen Untersuchungsverfahren, wurden ergänzend in vivo – Experimente durchgeführt. Weitere Schwerpunkte der Arbeit waren Untersuchungen zur Schadstoffaufnahme durch Pflanzen in Abhängigkeit von der Substratkonzentration sowie der Vegetationsdauer. Ein weiterer Schwerpunkt der Arbeiten waren Studien über mögliche Einflüsse eines neuartigen Bodenverbesserungsmaterials auf die Schadstoffmobilität und Bioverfügbarkeit der oben genannten potentiellen Schadstoffe sowie die damit verbundene mögliche Aufnahme durch die Untersuchungspflanzen.

Page generated in 0.0665 seconds