• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Parameterized Hardware/Software modules for Embedded ICE

Chen, Po-chou 12 July 2005 (has links)
The in-circuit emulator (ICE) is commonly adopted as a microprocessor debugging technique which features many advantages, such as low demand for hardware and repeatable use of the pins on the JTAG port. The development of system-on-chip technology has matured significantly in recent years. The microprocessors in system-on-chip designs have been applied in a variety of ways, and different microprocessors are being used in the embedded system. The traditional modus operandi of debug control, in which an ad hoc hardware/software package is required for each microprocessor, is not economical as far as programming and designing are concerned. Thus it is advisable to design a more flexible debug control hardware/software package which can fit into different embedded microprocessors with in-circuit emulators. This thesis reviews several types of embedded in-circuit emulator structure and comes up with a parameterized, modularized hardware/software package for controlling in-circuit emulators. An initial analysis of microprocessor systems and embedded debug circuits helps us to elicit reusable parameters so that we can achieve our desired debug control by simply adjusting parameters when we work on different microprocessor architectures and embedded debug circuits. An ensuing examination of the reusability and functionality of our designed debug control hardware/software enables us to group all the functions of our hardware/software package into different functional modules so that we can simply replace relevant functional modules on different microprocessor architectures and embedded debug circuits. The parameterized design allows us to use a single debug control software program on different microprocessor systems with the slightest change of parameter setting. The modularized model has the merit of minimizing our effort of debug control through module replacement when we need to adapt our software to a new environment (as when we want to use it on a different operating system or when we want to apply it to a different communication interface).
2

Analysis of Hardware and Software Approaches to Embedded In-Circuit Emulation of Microprocessor

Chen, Hsin-Ming 14 September 2001 (has links)
An in-circuit emulator (ICE) is an important tool for the development of microprocessor-based systems. External ICE boxes are complex and expensive piece of hardware so their use is usually limited to debugging phases of the microprocessor-based systems that involve hardware/software integration or investigation of real time I/O or bus events. On the other hand, a ROM monitor is inexpensive, but provides less observablity for the microprocessor¡¦s operations. In either case, the design practice of the ICE devices is usually independent to the design task of the microprocessor itself. The performance and cost of the ICE devices are not relevant to the microprocessors since they are two different entities. The ICE¡¦s are used only during the development/debugging of the microprocessor-based systems by substituting the original microprocessor on the socket with the ICE. The ICE is unplugged after debugging and the original microprocessor is placed back into the socket for normal operations of the microprocessor-based systems. Therefore, the performance and cost of the ICE¡¦s do not impact these of the microprocessor-based systems because the ICE¡¦s do not exist in them. We then define three feasible solutions software, hardware and hybrid) and integrate them with a synthesizable ARM7 icroprocessor core. The microprocessors with the embedded ICE¡¦s are synthesized and simulated to analyze and compare the corresponding hardware/software performance and cost and the debugging features of these approaches.
3

An 8-bit Microcontroller S/W Development Environment and Its Extension

Liu, Yung-chih 30 July 2007 (has links)
In this thesis, the first section will talk about how to implement the software development environment for 8bit microprocessor, including Compiler, Assembler, and Debugging mechanism etc. The design of Debugging mechanism is based on in-circuit emulator. In-circuit emulator is a common debugging technique for microprocessor. The designed ICE contains hardware implement and debugging software for it in this thesis. ICE hardware is a control circuit from TAP Controller, IEEE 1149.1 std. and it control the scan cells on the data bus. The Debugging software uses JTAG port, IEEE 1149.1 std., to insert debug instruction from PC to ICE hardware. In this thesis, the second section will focus on the process of integrating ICE hardware circuit and software debugger issued by two ways, our own design version and business suit debugging software support. The examples are not only integrating our LAB¡¦s 32bit microprocessor and ICE hardware, but also verifying software debugger to control ICE circuit by FPGA to prove above two methods are work.
4

Embedded In-Circuit Emulation and Tracing for Bus-based System-on-Chip Integration

Kao, Chung-fu 10 September 2007 (has links)
In the System-on-Chip (SoC) era, common industry estimates are that functional verification takes approximately 70% of the total effort on a project. For the time-to-market constrain, it¡¦s a challenge to reduce the SoC verification/debugging time efficiently. In an SoC, a microprocessor is an essential part of it. First, we focus the debugging problem on microprocessors. An in-circuit emulation (ICE) module that can be embedded with a microprocessor core. The ICE module, based on the IEEE 1149.1 JTAG architecture, supports typical debugging and testing mechanisms, including boundary scan paths, partial scan paths, single stepping, internal resource monitoring and modification, breakpoint detection, and mode switching between debugging and normal modes. The architecture of the ICE module is parameterized and retargetable to different microprocessors. It has been successfully integrated with two microprocessors with significantly different architectures: one 8-bit industrial embedded microcontroller HT48x00 and one 32-bit ARM7-like embedded microprocessor. FPGA prototypes and chip implementation have been accomplished. Experiments show that real-time (on-line) debugging at full speed is possible with the embedded ICE at a minor gate count overhead. Collecting the program execution traces at full speed is essential to the analysis and debugging of real-time software behavior of a complex system. However, the generation rate and the size of real time program traces are so huge such that real-time program tracing is often infeasible without proper hardware support. This paper presents a hardware approach to compress program execution traces in real time in order to reduce the trace size. The approach consists of three modularized phases: (1) branch/target filtering, (2) branch/target address encoding and (3) Lempel-Ziv-based data compression. A synthesizable RTL code for the proposed hardware is constructed to analyze the hardware cost and speed and typical multimedia benchmarks are used to measure the compression results. The results show that our hardware is capable of real time compression and achieving compression ratio of 454:1, far better than 5:1 achieved by typical existing hardware approaches. Furthermore, our modularized approach makes it possible to trade off between the hardware cost (typically from 1K to 50K gates) and the achievable compression ratio (typically from 5:1 to 454:1). For SoC debugging, bus signal tracing represents that the information which is generated from the system can be collected for later observation, debugging and analysis. However, the generation rate and the size of real time system traces are so huge such that a mechanism for system tracing that can reduce trace size efficiently is needed. In this paper, we propose a multi-resolution bus trace approach. The hardware bus tracer consists of two major stages: (1) signal monitor & tracing stage, and (2) trace compression stage. In the first stage, designer can trace the signals in detail or in rough depends on the debug purpose. In other word, the multi-resolution trace approach provides the trade-off between trace accuracy and trace depth. In the second stage, the bus tracer compresses the trace size efficiently; therefore the capability of on-chip storage is increased. In the host, the analyzer tool decompresses the trace data for future observation and debugging.
5

Design and verification of an ARM10-like Processor and its System Integration

Lin, Chun-Shou 07 February 2012 (has links)
With the advanced of the technique, we can design more IP in the same area space chip. The embedded system has more powerful about its application. We need to have a more efficient core processor to support the whole embedded system in complex system environment. The main purpose of this paper is increased the calculated speed, memory management and debugging for SYS32TME III, which is designed by our lab as an ARM10 like processor. We integrate the cache/MMU and EICE( Embedded in-circuit emulator ) into the embedded processor core. Using the cache/MMU, we can not only speed up the processor which access external memory time but also use the virtual address for Operating System. In order to keep the correctness of the system and speed up the system integration time, we use five functional (cache off, cache on and MMU off with cache hit/miss, cache on and MMU on with cach hit/cache miss and TLB hit/cache miss and TLB miss) tests to verify the cache/MMU and six coprocessor instructions (LDC, MCR, MCRR, MRC, MRRC, STC ) to verify the EICE. After that, we also use the regression test about the microprocessor, cache/MMU and EICE system integration. In the end, we turned the performance about the integrated cache/MMU and EICE, so that we can support an 200MHz ARM 10-like processor by 0.18£gm.
6

Design and Verification of ARM10 ICE Co-Processor

Lin, Tsung-Chen 11 August 2011 (has links)
Embedded in circuit emulator (EICE) is the most common and widely used debugging techniques for microprocessors. Because the ICE is capable to provide diverse debugging and testing mechanisms, such as: single-step debugging, breakpoints setting and detection, monitoring, and modification of internal resources. However, the shortcoming of the conventional embedded in circuit emulator (EICE) is that the operation of the processor has to be suspended during debugging, which is categorized as static debugging (Static Debug) and is infeasible for real-time debugging. Therefore, this paper proposes a design alternative to support the real-time system debugging without suspending the microprocessor via the debug hardware Coprocessor14 (the Debug Coprocessor). In this paper, the embedded in circuit emulator is combined with Coprocessor 14 to provide both the static debugging and Run-time system debugging. After incorporating CP14 with the debugging mechanism, the control of the debug hardware is no longer limited to use the IEEE 1149.1 test port during debugging. On the other hand, the set of debugging constraints and the observation of the internal state of the microprocessor can be achieved by inserting the Coprocessor instruction at the program level.

Page generated in 0.0323 seconds