• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 7
  • 3
  • Tagged with
  • 24
  • 24
  • 10
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Aplicação de técnicas de programação linear e extensões para otimização da alocação de água em sistemas de recursos hídricos, utilizando métodos de pontos interiores. / Application of linear programming techniques and extensions for optimization of water allocation in water resource systems, using interior points methods.

Schardong, André 13 April 2006 (has links)
Neste trabalho é apresentada uma ferramenta de otimização para análise de problemas de alocação de água em bacias hidrográficas utilizando técnicas de programação linear e linear por partes, integradas a um modelo de amortecimentos de ondas em canais. A otimização é feita de forma global, com uso de softwares de programação linear baseados nos métodos de pontos interiores. A metodologia de uso do sistema consiste em se obter uma solução ?ótima? para situações de disponibilidade de água insuficiente a todos os usos conflitantes na bacia. A ferramenta está sendo acoplada e incorporada ao AcquaNet, um Sistema de Suporte a Decisões (SSD) para análise de sistemas de recursos hídricos, que utiliza um algoritmo de rede de fluxo afim de otimizar a alocação de água. A formulação utilizando programação linear permite a análise global do sistema e por isso, espera-se melhor aproveitamento da água disponível, seja no menor déficit de atendimento às demandas ou maior armazenamento nos reservatórios. A programação linear com utilização de métodos de pontos interiores é atualmente uma técnica bastante conhecida e bem desenvolvida. Existem vários pacotes computacionais gratuitos com implementações eficientes dos métodos de pontos interiores que motivaram sua utilização neste trabalho. / This work presents an optimization tool for analyzing the problems of water allocation in watersheds by utilizing techniques of linear and piecewise linear programming integrated to a pattern of stream flow routing. The optimization is done in a global way with the usage of linear programming packages based upon the Internal Point Methods. The methodology of the usage consists in the acquirement of an optimal solution for situation of insufficient water availability for all conflicting consumptions from the watershed. The tool is being attached and incorporated to AcquaNet, which is a decision support system (DSS) for analysis of water resources systems that utilizes a network flow algorithm, with the purpose of optimizing the water allocation. The formulation that uses the linear programming leads to the analysis of the system as a whole and for this reason it is expected a better usage of the available water with a lower deficit in the supply or a greater storage in the reservoirs. Linear Programming with Internal Point Methods is nowadays a well known and very well developed technique. There are several computational packages with efficient implementations of the Internal Points Methods freely available, and that, has brought great motivation in its usage in the present work.
22

Flow Variability and Vegetation Dynamics in a Large Arid Floodplain: Cooper Creek, Australia

Capon, Samantha Jane, n/a January 2004 (has links)
Throughout arid and semi-arid inland Australia, many extensive floodplains occur in association with rivers which are amongst the most hydrologically variable in the world. As rainfall in these areas is characteristically low and patchy, conditions in Australia's 'dryland' floodplains fluctuate unpredictably between extended periods of drought and huge floods that transform vast areas into wetlands, often for months at a time. Vegetation in these floodplains is commonly dominated by short grass and forb associations and patches of open succulent shrubland which are attributed with high ecological and socio-economic values due to their provision of habitat to a diverse array of terrestrial and aquatic fauna and their productive native pasture growth. In temperate and tropical floodplains, a substantial number of studies have shown that plant community composition and structure is determined primarily by flow and alterations to flow in these areas, through water extraction or river regulation, have resulted in many changes to the vegetation including loss of biodiversity and mass invasions of exotic species. Despite increasing pressure for water resource development in 'dryland' regions, relatively little is known regarding the effects of highly variable flows on the vegetation dynamics of arid floodplains, particularly in Australia. This thesis addresses this knowledge gap by examining the role of flow in the vegetation dynamics of a large arid floodplain in central Australia: the Cooper Creek floodplain. The effects of flow on plant community dynamics, from an organism level to that of the landscape, are examined across a range of spatial and temporal scales. Results are presented from a two year temporal vegetation survey during which time two flood pulse events of differing sizes occurred. A large-scale spatial survey was also conducted to determine the effects of flood history on spatial variation in plant community composition and structure. The composition of the soil seed bank and its contribution to vegetation dynamics were additionally investigated through a series of germination trials. Amongst common arid floodplain plants, life history traits that enable persistence under variable hydrological conditions were also considered via several experiments aimed at determining the effects of flow on the outcomes of various life history stages including germination, growth and dispersal. Throughout the study, results are presented for plant groups that were predefined on the basis of life form, life span and taxonomic divisions within these categories. Plant community composition and structure in the Cooper Creek floodplain exhibits significant shifts both temporally, in response to flood pulse wetting and drying, and spatially, in response to flood history. Flood pulse inundation has the potential to influence each life history stage across the range of plant groups present and the outcomes of these appear to be determined by hydrological attributes such as flood pulse timing, duration and rate of drawdown. Vegetation consequently exhibits gradual zonation on a gradient of flood frequency along which plant groups occur at predictable locations depending on their life history traits and recent hydrological conditions. A substantial proportion of species display ruderal life history traits including large, persistent soil seed banks and rapid life cycles which enable escape in time from the stresses associated with flooding and drought. These species, mostly comprising annual monocots and forbs, are widespread throughout the landscape and their presence in the extant vegetation is related primarily to the time since the last flood pulse event and the hydrological attributes of this. Perennial species, particularly shrubs, do not appear to rely similarly on the soil seed bank for recruitment and their distribution in the floodplain vegetation is likely to be determined more by their ability to tolerate either flooding or drought. Overall, this study demonstrates that flow, despite its variability, has an overriding influence on vegetation dynamics in the arid floodplain of the Cooper Creek. The spatial and temporal variability of flow maintains a heterogeneous mosaic of plant communities of differing composition and structure. Given this close relationship between flow and vegetation dynamics, anthropogenic alterations to flow are likely to result in changes to the vegetation including homogenisation of plant communities across the floodplain landscape and eventual loss of biodiversity.
23

Aplicação de técnicas de programação linear e extensões para otimização da alocação de água em sistemas de recursos hídricos, utilizando métodos de pontos interiores. / Application of linear programming techniques and extensions for optimization of water allocation in water resource systems, using interior points methods.

André Schardong 13 April 2006 (has links)
Neste trabalho é apresentada uma ferramenta de otimização para análise de problemas de alocação de água em bacias hidrográficas utilizando técnicas de programação linear e linear por partes, integradas a um modelo de amortecimentos de ondas em canais. A otimização é feita de forma global, com uso de softwares de programação linear baseados nos métodos de pontos interiores. A metodologia de uso do sistema consiste em se obter uma solução ?ótima? para situações de disponibilidade de água insuficiente a todos os usos conflitantes na bacia. A ferramenta está sendo acoplada e incorporada ao AcquaNet, um Sistema de Suporte a Decisões (SSD) para análise de sistemas de recursos hídricos, que utiliza um algoritmo de rede de fluxo afim de otimizar a alocação de água. A formulação utilizando programação linear permite a análise global do sistema e por isso, espera-se melhor aproveitamento da água disponível, seja no menor déficit de atendimento às demandas ou maior armazenamento nos reservatórios. A programação linear com utilização de métodos de pontos interiores é atualmente uma técnica bastante conhecida e bem desenvolvida. Existem vários pacotes computacionais gratuitos com implementações eficientes dos métodos de pontos interiores que motivaram sua utilização neste trabalho. / This work presents an optimization tool for analyzing the problems of water allocation in watersheds by utilizing techniques of linear and piecewise linear programming integrated to a pattern of stream flow routing. The optimization is done in a global way with the usage of linear programming packages based upon the Internal Point Methods. The methodology of the usage consists in the acquirement of an optimal solution for situation of insufficient water availability for all conflicting consumptions from the watershed. The tool is being attached and incorporated to AcquaNet, which is a decision support system (DSS) for analysis of water resources systems that utilizes a network flow algorithm, with the purpose of optimizing the water allocation. The formulation that uses the linear programming leads to the analysis of the system as a whole and for this reason it is expected a better usage of the available water with a lower deficit in the supply or a greater storage in the reservoirs. Linear Programming with Internal Point Methods is nowadays a well known and very well developed technique. There are several computational packages with efficient implementations of the Internal Points Methods freely available, and that, has brought great motivation in its usage in the present work.
24

Testing and Refining a Unique Approach for Setting Environmental Flow and Water Level Targets for a Southern Ontario Subwatershed

Beaton, Andrew 15 August 2012 (has links)
In this study Bradford’s (2008) approach for setting ecological flow and water level targets is tested and refined through application within the Lake Simcoe Region Conservation Authority’s (LSRCA) subwatershed of Lover’s Creek. A method for defining subwatershed objectives and identifying habitat specialists through expert input is proposed and tested. The natural regime of each streamflow and wetland site is characterized along with the hydrological alteration at each site. Potential ecological responses to the hydrologic alterations are then hypothesized for the different types of changes calculated at each site. Methods for setting overall ecosystem health and specific ecological objective flow targets are proposed and tested. These targets are integrated into a flow regime for each site and a process for using this information for decision making is suggested. Flow magnitude quantification is attempted using hydraulic modelling and sediment transport equations, however the data used were found to be inadequate for this application. The accuracy of the targets developed using the method presented in this paper is mainly limited by the accuracy of the hydrological model and quantified flow magnitudes. Recommendations for improving these components of the assessment are made. The unique approach and recommendations presented in this paper provide explicit steps for developing flow targets for subwatersheds within the LSRCA. This research contributes toward the advancement of EFA within the LSRCA, which provides opportunity for enhanced protection and restoration of ecosystem health across the watershed. / Lake Simcoe Region Conservation Authority

Page generated in 0.069 seconds