• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

L’étude de l’InP et du GaP suite à l’implantation ionique de Mn et à un recuit thermique

Bucsa, Ioan Gigel 08 1900 (has links)
Cette thèse est dédiée à l’étude des matériaux InMnP et GaMnP fabriqués par implantation ionique et recuit thermique. Plus précisément nous avons investigué la possibilité de former par implantation ionique des matériaux homogènes (alliages) de InMnP et GaMnP contenant de 1 à 5 % atomiques de Mn qui seraient en état ferromagnétique, pour des possibles applications dans la spintronique. Dans un premier chapitre introductif nous donnons les motivations de cette recherche et faisons une revue de la littérature sur ce sujet. Le deuxième chapitre décrit les principes de l’implantation ionique, qui est la technique utilisée pour la fabrication des échantillons. Les effets de l’énergie, fluence et direction du faisceau ionique sur le profil d’implantation et la formation des dommages seront mis en évidence. Aussi dans ce chapitre nous allons trouver des informations sur les substrats utilisés pour l’implantation. Les techniques expérimentales utilisées pour la caractérisation structurale, chimique et magnétique des échantillons, ainsi que leurs limitations sont présentées dans le troisième chapitre. Quelques principes théoriques du magnétisme nécessaires pour la compréhension des mesures magnétiques se retrouvent dans le chapitre 4. Le cinquième chapitre est dédié à l’étude de la morphologie et des propriétés magnétiques des substrats utilisés pour implantation et le sixième chapitre, à l’étude des échantillons implantés au Mn sans avoir subi un recuit thermique. Notamment nous allons voir dans ce chapitre que l’implantation de Mn à plus que 1016 ions/cm2 amorphise la partie implantée du matériau et le Mn implanté se dispose en profondeur sur un profil gaussien. De point de vue magnétique les atomes implantés se trouvent dans un état paramagnétique entre 5 et 300 K ayant le spin 5/2. Dans le chapitre 7 nous présentons les propriétés des échantillons recuits à basses températures. Nous allons voir que dans ces échantillons la couche implantée est polycristalline et les atomes de Mn sont toujours dans un état paramagnétique. Dans les chapitres 8 et 9, qui sont les plus volumineux, nous présentons les résultats des mesures sur les échantillons recuits à hautes températures : il s’agit d’InP et du GaP implantés au Mn, dans le chapitre 8 et d’InP co-implanté au Mn et au P, dans le chapitre 9. D’abord, dans le chapitre 8 nous allons voir que le recuit à hautes températures mène à une recristallisation épitaxiale du InMnP et du GaMnP; aussi la majorité des atomes de Mn se déplacent vers la surface à cause d’un effet de ségrégation. Dans les régions de la surface, concentrés en Mn, les mesures XRD et TEM identifient la formation de MnP et d’In cristallin. Les mesures magnétiques identifient aussi la présence de MnP ferromagnétique. De plus dans ces mesures on trouve qu’environ 60 % du Mn implanté est en état paramagnétique avec la valeur du spin réduite par rapport à celle trouvée dans les échantillons non-recuits. Dans les échantillons InP co-implantés au Mn et au P la recristallisation est seulement partielle mais l’effet de ségrégation du Mn à la surface est beaucoup réduit. Dans ce cas plus que 50 % du Mn forme des particules MnP et le restant est en état paramagnétique au spin 5/2, dilué dans la matrice de l’InP. Finalement dans le dernier chapitre, 10, nous présentons les conclusions principales auxquels nous sommes arrivés et discutons les résultats et leurs implications. / This thesis is dedicated to the study of InMnP and GaMnP materials fabricated by ion implantation and thermal annealing. More precisely we have investigated the possibility of forming by ion implantation homogeneous InMnP and GaMnP materials (alloys), containing up to 5 at. % of Mn, that would be in a ferromagnetic state for possible applications in spintronics. In the first introductive chapter we give the motivations for this research and briefly comment the literature existent on this subject. The second chapter describes the principles of ion implantation, which is the technique used for the fabrication of the samples. The effects of the energy, fluency and direction of the ion beam on the implantation profile and the formation of damages will be highlighted. Also in this chapter we shall find information concerning the semiconducting substrates used for the implantation. The experimental techniques used for the structural, chemical and magnetic characterisation of the samples, together with their limitations are discussed in the third chapter. Some theoretical principles of magnetism necessary for the understanding of the magnetic measurements are presented in chapter 4. The fifth chapter is dedicated to the study of the morphology and magnetic properties of the substrates used for implantation and the sixth chapter to the study of samples implanted with Mn without thermal annealing. In particular we’ll see in this chapter that Mn implantation at more then 1016 ions/cm2 makes amorphous the implanted layer and the Mn atoms are distributed in depth following a Gaussian profile. The implanted Mn atoms are in a paramagnetic state between 5 and 300 K having the spin value of 5/2. In chapter 7 we present the properties of samples annealed at low temperatures. We shall see that in these samples the implanted layer is polycristalline and the Mn atoms are still in a paramagnetic state. In the chapters 8 and 9 that contain most of the results of this thesis, we present the measurements on samples annealed at high temperatures: in chapter 8 one shall find results on InP and GaP implanted with Mn and in chapter 9 one shall see results on InP co-implanted with Mn and P. Firstly, in chapter 8 we’ll see that thermal annealing at high temperatures leads to an epitaxial recrystallization of InMnP and GaMnP. But most of the Mn atoms diffuse to the surface due to a segregation effect. In the regions at the surface, highly concentrated in Mn, the XRD and TEM measurement identify the formation of MnP and In crystalline. The magnetic measurements identify also the presence of ferromagnetic MnP. Moreover in these measurements one finds that 60 % of the implanted Mn is in a paramagnetic state with the spin value reduced with respect to that found in un-annealed samples. In the InP samples co-implanted with Mn and P we have only a partial recrystallization but, the effect of segregation of Mn at the surface is much reduced. In this case more than 50 % of the implanted Mn forms ferromagnetic MnP and the rest of it is diluted in InP, in a paramagnetic state with spin 5/2. Finally, in the last chapter 10 we present the principal conclusion that we have reached and discuss the results and their implications.
2

L’étude de l’InP et du GaP suite à l’implantation ionique de Mn et à un recuit thermique

Bucsa, Ioan Gigel 08 1900 (has links)
Cette thèse est dédiée à l’étude des matériaux InMnP et GaMnP fabriqués par implantation ionique et recuit thermique. Plus précisément nous avons investigué la possibilité de former par implantation ionique des matériaux homogènes (alliages) de InMnP et GaMnP contenant de 1 à 5 % atomiques de Mn qui seraient en état ferromagnétique, pour des possibles applications dans la spintronique. Dans un premier chapitre introductif nous donnons les motivations de cette recherche et faisons une revue de la littérature sur ce sujet. Le deuxième chapitre décrit les principes de l’implantation ionique, qui est la technique utilisée pour la fabrication des échantillons. Les effets de l’énergie, fluence et direction du faisceau ionique sur le profil d’implantation et la formation des dommages seront mis en évidence. Aussi dans ce chapitre nous allons trouver des informations sur les substrats utilisés pour l’implantation. Les techniques expérimentales utilisées pour la caractérisation structurale, chimique et magnétique des échantillons, ainsi que leurs limitations sont présentées dans le troisième chapitre. Quelques principes théoriques du magnétisme nécessaires pour la compréhension des mesures magnétiques se retrouvent dans le chapitre 4. Le cinquième chapitre est dédié à l’étude de la morphologie et des propriétés magnétiques des substrats utilisés pour implantation et le sixième chapitre, à l’étude des échantillons implantés au Mn sans avoir subi un recuit thermique. Notamment nous allons voir dans ce chapitre que l’implantation de Mn à plus que 1016 ions/cm2 amorphise la partie implantée du matériau et le Mn implanté se dispose en profondeur sur un profil gaussien. De point de vue magnétique les atomes implantés se trouvent dans un état paramagnétique entre 5 et 300 K ayant le spin 5/2. Dans le chapitre 7 nous présentons les propriétés des échantillons recuits à basses températures. Nous allons voir que dans ces échantillons la couche implantée est polycristalline et les atomes de Mn sont toujours dans un état paramagnétique. Dans les chapitres 8 et 9, qui sont les plus volumineux, nous présentons les résultats des mesures sur les échantillons recuits à hautes températures : il s’agit d’InP et du GaP implantés au Mn, dans le chapitre 8 et d’InP co-implanté au Mn et au P, dans le chapitre 9. D’abord, dans le chapitre 8 nous allons voir que le recuit à hautes températures mène à une recristallisation épitaxiale du InMnP et du GaMnP; aussi la majorité des atomes de Mn se déplacent vers la surface à cause d’un effet de ségrégation. Dans les régions de la surface, concentrés en Mn, les mesures XRD et TEM identifient la formation de MnP et d’In cristallin. Les mesures magnétiques identifient aussi la présence de MnP ferromagnétique. De plus dans ces mesures on trouve qu’environ 60 % du Mn implanté est en état paramagnétique avec la valeur du spin réduite par rapport à celle trouvée dans les échantillons non-recuits. Dans les échantillons InP co-implantés au Mn et au P la recristallisation est seulement partielle mais l’effet de ségrégation du Mn à la surface est beaucoup réduit. Dans ce cas plus que 50 % du Mn forme des particules MnP et le restant est en état paramagnétique au spin 5/2, dilué dans la matrice de l’InP. Finalement dans le dernier chapitre, 10, nous présentons les conclusions principales auxquels nous sommes arrivés et discutons les résultats et leurs implications. / This thesis is dedicated to the study of InMnP and GaMnP materials fabricated by ion implantation and thermal annealing. More precisely we have investigated the possibility of forming by ion implantation homogeneous InMnP and GaMnP materials (alloys), containing up to 5 at. % of Mn, that would be in a ferromagnetic state for possible applications in spintronics. In the first introductive chapter we give the motivations for this research and briefly comment the literature existent on this subject. The second chapter describes the principles of ion implantation, which is the technique used for the fabrication of the samples. The effects of the energy, fluency and direction of the ion beam on the implantation profile and the formation of damages will be highlighted. Also in this chapter we shall find information concerning the semiconducting substrates used for the implantation. The experimental techniques used for the structural, chemical and magnetic characterisation of the samples, together with their limitations are discussed in the third chapter. Some theoretical principles of magnetism necessary for the understanding of the magnetic measurements are presented in chapter 4. The fifth chapter is dedicated to the study of the morphology and magnetic properties of the substrates used for implantation and the sixth chapter to the study of samples implanted with Mn without thermal annealing. In particular we’ll see in this chapter that Mn implantation at more then 1016 ions/cm2 makes amorphous the implanted layer and the Mn atoms are distributed in depth following a Gaussian profile. The implanted Mn atoms are in a paramagnetic state between 5 and 300 K having the spin value of 5/2. In chapter 7 we present the properties of samples annealed at low temperatures. We shall see that in these samples the implanted layer is polycristalline and the Mn atoms are still in a paramagnetic state. In the chapters 8 and 9 that contain most of the results of this thesis, we present the measurements on samples annealed at high temperatures: in chapter 8 one shall find results on InP and GaP implanted with Mn and in chapter 9 one shall see results on InP co-implanted with Mn and P. Firstly, in chapter 8 we’ll see that thermal annealing at high temperatures leads to an epitaxial recrystallization of InMnP and GaMnP. But most of the Mn atoms diffuse to the surface due to a segregation effect. In the regions at the surface, highly concentrated in Mn, the XRD and TEM measurement identify the formation of MnP and In crystalline. The magnetic measurements identify also the presence of ferromagnetic MnP. Moreover in these measurements one finds that 60 % of the implanted Mn is in a paramagnetic state with the spin value reduced with respect to that found in un-annealed samples. In the InP samples co-implanted with Mn and P we have only a partial recrystallization but, the effect of segregation of Mn at the surface is much reduced. In this case more than 50 % of the implanted Mn forms ferromagnetic MnP and the rest of it is diluted in InP, in a paramagnetic state with spin 5/2. Finally, in the last chapter 10 we present the principal conclusion that we have reached and discuss the results and their implications.
3

Indium phosphide quantum dots in GaP and in In 0.48 Ga 0.52 P

Hatami, Fariba 23 October 2002 (has links)
Im Rahmen dieser Arbeit wurden selbstorganisierte, verspannte InP-Quantenpunkte mittels Gasquellen-Molekularstrahlepitaxie hergestellt und deren strukturelle und optische Eigenschaften untersucht. Die Quantenpunkte wurden sowohl in InGaP-Matrix gitterangepasst auf GaAs-Substrat als auch in GaP-Matrix auf GaP-Substrat realisiert. Die starke Gitterfehlanpassung von 3,8% im InP/InGaP- bzw. 7,7% im InP/GaP-Materialsystem ermöglicht Inselbildung mittels des Stranski-Krastanow-Wachstumsmodus: Ab einer kritischen InP-Schichtdicke findet kein zweidimensionales, sondern ein dreidimensionales Wachstum statt. Die kritische Schichtdicke wurde mit etwa 3 Monolagen für das InP/InGaP- und mit etwa 1,8 Monolagen für das InP/GaP-System bestimmt. Die strukturellen Untersuchungen zeigen, dass InP Quantenpunkte in GaP im Vergleich zu solchen in InGaP größer sind und stärker zum Abbau von Verspannung tendieren. Die in InGaP-Matrix eingebettete InP-Quantenpunkte zeigen sehr ausgeprägte optische Emissionen, die, in Abhängigkeit von den Wachstumsparametern, im Bereich von 1,6 bis 1,75eV liegen. Die Emissionslinie wird der strahlenden Rekombination von in den Quantenpunkten lokalisierten Elektronen und Löchern zugeordnet. Dies wird auch durch das Bänderschema bestätigt, das mit Hilfe der Model-Solid-Theorie modelliert wurde. Darüber hinaus weist die Lebensdauer der Ladungsträger von einigen hundert Pikosekunden darauf hin, dass die InP/InGaP Quantenpunkte vom Typ I sind. Zusätzlich zu den optischen Eigenschaften wurde die Anordnung von dicht gepackten InP-Quantenpunkten in und auf InGaP mittels zweidimensionaler Fourier-Transformation der Daten aus der Atomkraftmikroskopie, Transmissionelektronmikroskopie und diverser Röntgen-Streuexperimente untersucht sowie die planaren und vertikale Ordnungseffekte der Quantenpunkte studiert. Die Untersuchungen zeigen, dass die Ordnung der Quantenpunkte sowohl hinsichtlich ihrer Packungsdichte als auch ihrer Orientierung mit wachsender InP-Bedeckung zunimmt. Darüber hinaus wurde die Verspannungsverteilung in den InP/InGaP-Quantenpunkten mit Hilfe von diffuser Röntgen-Streuung in Verbindung mit kinematischen Simulationen studiert und eine asymmetrische Form der Quantenpunkte festgestellt, die auch Ursache für die gemessene Polarisationsanisotropie der Photolumineszenz sein kann. Die in GaP-Matrix eingebetteten InP-Quantenpunkte wurden im Rahmen dieser Arbeit erstmals erfolgreich auf ihre aktiven optischen Eigenschaften hin untersucht. Sie zeigen eine optische Emission zwischen 1,9 und 2 eV im sichtbaren Bereich. Diese strahlende Rekombination wird ebenfalls dem direkten Übergang zwischen Elektronen- und Löcherzuständen zugeordnet, die in den InP Quantenpunkten lokalisiert sind. Auch Photolumineszenzmessungen unter mechanischem Druck weisen darauf hin, dass es sich in diesem System hauptsächlich um einen direkten räumlichen Übergang handelt. Dieses Ergebnis wird dadurch untermauert, dass die Lebensdauer der Ladungsträger im Bereich von etwa 2 ns liegt, was nicht untypisch für Typ-I-Systeme ist. Die Ergebnisse für zweidimensionale, in GaP eingebettete InP-Schichten zeigen im Gegensatz zu den Quantenpunkten, dass die strahlende Rekombination in InP/GaP Quantentöpfen aufgrund eines indirekten Übergangs (sowohl in Orts- als auch in Impulsraum) zwischen Elektronen- und Löcherzuständen erfolgt. Die optischen Emissionslinien liegen für Quantentöpfe im Bereich von 2,15 bis 2,30eV. Die nachgewiesene sehr lange Lebensdauer der Ladungsträger von etwa 20ns weist weiter darauf hin, dass die Quantentöpfe ein Typ-II-System sind. Nach Modellierung des Bänderschemas für das verspannte InP/GaP-System und Berechnung der Energieniveaus von Löchern und Elektronen darin mit Hilfe der Effektive-Masse-Näherung in Abhängigkeit von der InP-Schichtdicke zeigt sich ferner, dass für InP-Quantentöpfe mit einer Breite kleiner als 3nm die Quantisierungsenergie der Elektronen so groß ist, dass der X-Punkt in GaP energetisch tiefer liegt als der Gamma-Punkt in InP. Dieser Potentialverlauf führt dazu , dass die Elektronen im X-Minimum des GaP lokalisieren, während die Löcher in der InP-Schicht bleiben. Optische Untersuchungen nach thermischer Behandlung der Quantenpunkte führen sowohl im InP/InGaP- als auch im InP/GaP-System zur Verstärkung der Lumineszenz, die bis zu 15 mal internsiver als bei unbehandelten Proben sein kann. Insgesamt zeigt diese Arbeit, dass InP-Quantenpunkte durch ihre optischen Eigenschaften sehr interessant für optoelektronische Anwendungen sind. Die Verwendung von durchsichtigem GaP (mit einer größeren Bandlücke und kleineren Gitterkonstante im Vergleich zu GaAs und InGaP) als Matrix und Substrat hat nicht nur den Vorteil, dass die InP-Quantenpunkte hierbei im sichtbaren Bereich Licht emittieren, sondern man kann in der Praxis auch von einer hochentwickelten GaP-basierten LED-Technologie profitieren. Hauptergebnis dieser Arbeit ist, dass die in indirektes GaP eingebetteten InP-Quantenpunkte aktive optische Eigenschaften zeigen. Sie können daher als aktive Medien zur Realisierung neuartiger effizienter Laser und Leuchtdioden verwendet werden. / The growth and structural properties of self-assembled InP quantum dots are presented and discussed, together with their optical properties and associated carrier dynamics. The QDs are grown using gas-source molecular-beam epitaxy in and on the two materials InGaP (lattice matched to GaAs) and GaP. Under the proper growth conditions, formation of InP dots via the Stranski-Krastanow mechanism is observed. The critical InP coverage for 2D-3D transition is found to be 3ML for the InP/ InGaP system and 1.8ML for the InP/GaP system. The structural characterization indicates that the InP/GaP QDs are larger and, consequently, less dense compared to the InP/ InGaP QDs; hence, InP dots on GaP tend to be strain-relaxed. The InP/ InGaP QDs tend to form ordered arrays when InP coverage is increased. Intense photoluminescence from InP quantum dots in both material systems is observed. The PL from InP/GaP QDs peaks between 1.9 and 2 eV and is by about 200 meV higher in energy than the PL line from InP/ InGaP QDs. The optical emission from dots is attributed to direct transitions between the electrons and heavy-holes confined in the InP dots, whereas the photoluminescence from a two-dimensional InP layer embedded in GaP is explained as resulting from the spatially indirect recombination of electrons from the GaP X valleys with holes in InP and their phonon replicas. The type-II band alignment of InP/GaP two-dimensional structures is further confirmed by the carrier lifetime above 19 ns, which is much higher than in type-I systems. The observed carrier lifetimes of 100-500 ps for InP/ InGaPQDs and 2 ns for InP/GaP QDs support our band alignment modeling. Pressure-dependent photoluminescence measurements provide further evidence for a type-I band alignment for InP/GaP QDs at normal pressure, but indicate that they become type-II under hydrostatic pressures of about 1.2 GPa and are consistent with an energy difference between the lowest InP and GaP states of about 31 meV. Exploiting the visible direct-bandgap transition in the GaP system could lead to an increased efficiency of light emission in GaP-based light emitters.

Page generated in 0.0198 seconds