• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wind Turbine Collective and Individual Pitch Control Using Quantitative Feedback Theory

Wheeler, Laura 06 June 2017 (has links)
No description available.
2

Commande crone appliquée à l'optimisation de la production d'une éolienne / CRONE command for the optimization of wind turbine production

Feytout, Benjamin 11 December 2013 (has links)
Les études, menées en collaboration entre la société VALEOL et le laboratoire IMS, proposent des solutions pour optimiser la production et le fonctionnement d'une éolienne. Il s’agit de travailler sur les lois de commande du système ou des sous-systèmes en utilisant la commande CRONE, répondant à un besoin de robustesse. Chaque étude met en avant des aspects de modélisation, d’identification et de synthèse de lois de commande avant mises en application au travers de simulations ou d’essais sur modèles réduits et taille réelle.Le chapitre 1 donne une vision d’ensemble des problématiques traitées dans ce manuscrit, à l’aide d’états de l’art et de remise dans le contexte économique et industriel de 2013.Le chapitre 2 introduit la commande CRONE pour la synthèse de régulateurs robustes. Cette méthodologie est utilisée pour réaliser l’asservissement de la vitesse de rotation d’une éolienne à vitesse variable, présentant une architecture innovante avec un variateur de vitesse mécanique et génératrice synchrone.Le chapitre 3 établit la comparaison de trois nouveaux critères d’optimisation pour la méthodologie CRONE. Le but est de réduire sa complexité et de faciliter sa manipulation par tout utilisateur. Les résultats sur les différents critères sont obtenus par simulations sur un exemple académique, puis sur un modèle d’éolienne de type MADA.Le chapitre 4 porte sur la réduction des charges structurelles transmises par le vent à l’éolienne. Il est question d’une amélioration du contrôle de l’angle de pitch par action indépendante sur chaque pale en fonction de la position du rotor ou encore des perturbations liées au ventLe chapitre 5 est consacré à la conception d’un système d’antigivrage et dégivrage d’une pale dans le cadre d’un projet Aquitain. Après modélisation et identification du procédé, la commande CRONE est utilisée pour réguler la température d’une peinture polymère chauffante sous alimentation électrique disposée sur les pales. L’étude est complétée par la mise en place d’un observateur pour la détection de présence de givre. / The research studies, in collaboration with VALEOL and IMS laboratory, propose several solutions to optimize the production and the efficiency of a wind turbine. The general theme of the work is based on control laws of the system or subsystems using the CRONE robust design. Each part highlights aspects of modeling, system identification and design before simulations or tests of scale and full size models. Chapter 1 provides an overview of the issues discussed in this manuscript, using states of the art and precisions on the industrial and economic context of 2013.Chapter 2 introduces the CRONE command for robust design. It is used to achieve the control of the rotation speed of a variable speed wind turbine, with an innovative architecture - mechanical variable speed solution and synchronous generator.Chapter 3 makes a comparison of three new optimization criteria for CRONE design. The aim is to reduce the methodology complexity and to facilitate handling by any user. The results are obtained through simulations on an academic example, then with a DFIG wind turbine model. Chapter 4 focuses on the reduction of structural loads transmitted by the wind on the turbine. It is about better control of the pitch angle by individual pitch control, depending on the rotor position or wind disturbances.Chapter 5 deals with the design of an anti-icing/de-icing system for blades. After the modeling and identification steps, the CRONE design is used to control the temperature of a heating coating disposed on the blades. An observer is finally designed to detect the presence of ice.
3

New Generator Control Algorithms for Smart-Bladed Wind Turbines to Improve Power Capture in Below Rated Conditions

Aquino, Bryce B 07 November 2014 (has links)
With wind turbines growing in size, operation and maintenance has become a more important area of research with the goal of making wind energy more profitable. Wind turbine blades are subjected to intense fluctuating loads that can cause significant damage over time. The need for advanced methods of alleviating blade loads to extend the lifespan of wind turbines has become more important as worldwide initiatives have called for a push in renewable energy. An area of research whose goal is to reduce the fatigue damage is smart rotor control. Smart bladed wind turbines have the ability to sense aerodynamic loads and compute an actuator response to manipulate the aerodynamics of the wind turbine. The wind turbine model for this research is equipped with two different smart rotor devices. Independent pitch actuators for each blade and trailing edge flaps (TEFs) on the outer 70 to 90% of the blade span are used to modify aerodynamic loads. Individual Pitch Control (IPC) and Individual Flap Control (IFC) are designed to control these devices and are implemented on the NREL 5 MW wind turbine. The consequences of smart rotor control lie in the wind turbine’s power capture in below rated conditions. Manipulating aerodynamic loads on the blades cause the rotor to decelerate, which effectively decreases the rotor speed and power output by 1.5%. Standard Region 2 generator torque control laws do not take into consideration variations in rotor dynamics which occur from the smart rotor controllers. Additionally, this research explores new generator torque control algorithms that optimize power capture in below rated conditions. FAST, an aeroelastic code for the simulation of wind turbines, is utilized to test the capability and efficacy of the controllers. Simulation results for the smart rotor controllers prove that they are successful in decreasing the standard deviation of blade loads by 26.3% in above rated conditions and 12.1% in below rated conditions. As expected, the average power capture decreases by 1.5%. The advanced generator torque controllers for Region 2 power capture have a maximum average power increase of 1.07% while still maintaining load reduction capabilities when coupled with smart rotor controllers. The results of this research show promise for optimizing wind turbine operation and increasing profitability.

Page generated in 0.075 seconds