• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 8
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 52
  • 52
  • 11
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Evaluating Liquefaction Triggering Potential from Induced Seismicity in Oklahoma, Texas, and Kansas

Quick, Tyler James 30 June 2021 (has links)
Deep wastewater injection-induced seismicity has led to over a thousand magnitude (Mw) > 3 earthquakes and four Mw>5 earthquakes in Oklahoma, Texas, and Kansas (OTK) over the last ten years. Liquefaction observed following the 3 September 2016, Mw5.8 Pawnee, OK, induced earthquake raises concerns regarding the liquefaction risk posed by future induced earthquakes. The stress-based simplified liquefaction evaluation procedure is widely used to evaluate liquefaction potential. However, empirical aspects of this procedure were primarily developed for tectonic earthquakes in active shallow-crustal tectonic regimes (e.g., California). Consequently, due to differences in ground motion characteristics and regional geology, the depth-stress reduction factor (rd) and Magnitude Scaling Factor (MSF) relationships used in these variants may be unsuitable for use with induced earthquakes in OTK. This is because both rd, which accounts for the non-rigid soil profile response, and MSF, which accounts for shaking duration, are affected by ground motion and soil profile characteristics. The objective of this research is to develop and test a new liquefaction triggering model for use in assessing the regional liquefaction hazard in OTK from injection-induced earthquakes. This model incorporates induced seismicity-specific rd and MSF relationships. To assess model efficacy, the liquefaction potential is evaluated for several sites impacted by the 2016 Pawnee earthquake using the model developed herein, as well as several models commonly used to evaluate liquefaction potential for tectonic earthquakes. Estimates are then compared with field observations of liquefaction made following the Pawnee event. This analysis shows that, at most sites, the induced seismicity-specific model more accurately predicts liquefaction severity than do models developed for tectonic earthquakes, which tend to over-predict liquefaction severity. The liquefaction triggering model developed herein is also used to assess the minimum magnitude (Mmin) of induced earthquakes capable of triggering liquefaction. For sites capable of supporting structures, it is shown that Mmin = 5.0 is sufficient to fully capture liquefaction hazard from induced events in OTK. However, for extremely liquefaction-susceptible soil profiles that are potentially relevant to other infrastructure (e.g., pipelines and levees), consideration of Mmin as low as 4.0 may be required. / Doctor of Philosophy / Seismic activity caused by deep wastewater injection has caused over a thousand magnitude (Mw) > 3 earthquakes and four Mw>5 earthquakes in Oklahoma, Texas, and Kansas (OTK) over the last ten years. These events are referred to as induced earthquakes. Liquefaction observed following the 3 September 2016, Mw5.8 Pawnee, OK, induced earthquake raises concerns regarding the liquefaction risk posed by future induced earthquakes. The stress-based simplified liquefaction evaluation procedure is widely used to evaluate liquefaction potential. However, to date, variants of this procedure were developed primarily for natural, tectonic earthquakes in active seismic areas such as California. Due to differences between induced and tectonic earthquakes as well as regional geology, existing variants of the simplified procedure may be unsuitable for use with induced earthquakes in OTK. The objective of this research is to develop and test a new liquefaction triggering model for use in assessing the regional liquefaction hazard in OTK from injection-induced earthquakes. The model was developed using regional induced earthquake ground motion recordings and soil profiles. To assess model accuracy, liquefaction potential is assessed at several sites impacted by the 2016 Pawnee earthquake using the new model, as well as several models commonly used to evaluate liquefaction potential for tectonic earthquakes. Estimates are then compared with field observations of liquefaction made following the Pawnee event. This analysis shows that, at most sites, the induced seismicity-specific model more accurately predicts liquefaction severity than do models developed for tectonic earthquakes, which tend to over-predict liquefaction severity. The liquefaction triggering model developed herein is used to assess the minimum magnitude (Mmin) of induced earthquakes capable of triggering liquefaction. For sites capable of supporting structures, it is shown that Mmin = 5.0 is sufficient to fully capture liquefaction hazard from induced events in OTK. However, for extremely liquefaction-susceptible soil profiles potentially relevant to other infrastructure (e.g., pipelines and levees), Mmin as low as 4.0 may be required.
12

Regional-Scale Impacts of Fluid Composition and Geologic Structure for Injection-Induced Seismicity in the Southern U.S. Midcontinent

Konzen, Graydon Leo 24 June 2020 (has links)
Over the last decade, an increase in earthquake occurrence in Oklahoma and Kansas has been linked to oilfield wastewater injection disposal, particularly into the regionally underpressured Arbuckle Group. The Arbuckle is hydraulically connected to Precambrian basement through an extensive fracture system, which transmits pressure perturbations from wastewater injections to seismogenic depths. Previous studies have convincingly attributed induced seismicity to pore pressure diffusion and solid elastic stressing, both resulting from fluid waste injection. Recent work adds to the physical understanding of injection-induced seismicity by demonstrating that the density differential between injection fluids and formation brines may also drive fluid pressure into the seismogenic basement. In this thesis, variable density groundwater flow is modeled in a numerical simulation comprising parts of the Anadarko Basin, the Anadarko Shelf, the Cherokee Platform, and the Nemaha Fault Zone as well as injection data from 2006-2018. Results show buoyancy forces interacting with regional stratigraphic dip to force density-driven pressure transients into the deep Anadarko Basin, aligning with previously unexplained earthquakes in that region. / Master of Science / Increased earthquake activity in Oklahoma and Kansas over the last decade is linked waste disposal related to hydrofracking. Oil and gas produced in the fracking process is often mixed with large amounts of water that is too salty to be used for public or industrial purposes, thus this water is disposed of via injection into deep rock layers in the upper portion of the Earth's interior, or crust. This injection disturbs the crust to trigger earthquakes where none have been historically observed. Previous studies examining this phenomenon assume that the rock layers of the crust lie flat and level; simplify the nature of major faults, or cracks, in the crust; and do not consider differences in water chemistry between injected water and water that already occupies the crust. The study developed in this thesis considers the effect of these three factors with regard to how they influence the extent of the linkage between waste water injection and earthquakes in Oklahoma and Kansas.
13

Analysis and interpretation of clusters of seismic events in mines

Hudyma, Martin Raymond January 2009 (has links)
Spatial clustering of seismic events in mines has been widely reported in literature. Despite obvious visual correlations between spatial clusters of seismic events and geomechanical structures in mines (such as pillars, dykes and faults), very limited research has been undertaken to utilise this information to filter seismic data. A linkage between spatial seismic event clusters and discrete rockmass failure mechanisms is tenuous and not well established using current seismic analysis techniques. A seismic event clustering methodology is proposed. The first component of the methodology uses a complete-linkage (CLINK) clustering routine to identify relatively compact clusters of seismic events. The CLINK clusters are then subjected to a singlelink clustering process, which uses spatial location and seismic source parameters as similarity measures. The resultant
14

Seismic Wave Velocity Variations in Deep Hard Rock Underground Mines by Passive Seismic Tomography

Ghaychi Afrouz, Setareh 22 April 2020 (has links)
Mining engineers are tasked with ensuring that underground mining operations be both safe and efficiently productive. Induced stress in deep mines has a significant role in the stability of the underground mines and hence the safety of the mining workplace because the behavior of the rock mass associated with mining-induced seismicity is poorly-understood. Passive seismic tomography is a tool with which the performance of a rock mass can be monitored in a timely manner. Using the tool of passive seismic tomography, the advance rate of operation and mining designs can be updated considering the induced stress level in the abutting rock. Most of our current understanding of rock mass behavior associated with mining-induced seismicity comes from numerical modeling and a limited set of case studies. Therefore, it is critical to continuously monitor the rock mass performance under induced stress. Underground stress changes directly influence the seismic wave velocity of the rock mass, which can be measured by passive seismic tomography. The precise rock mass seismicity can be modeled based on the data recorded by seismic sensors such as geophones of an in-mine microseismic system. The seismic velocity of rock mass, which refers to the propagated P-wave velocity, varies associated with the occurrence of major seismic events (defined as having a local moment magnitude between 2 to 4). Seismic velocity changes in affected areas can be measured before and after a major seismic event in order to determine the highly stressed zones. This study evaluates the seismic velocity trends associated with five major seismic events with moment magnitude of 1.4 at a deep narrow-vein mine in order to recognize reasonable patterns correlated to induced stress redistribution. This pattern may allow recognizing areas and times which are prone to occurrence of a major seismic event and helpful in taking appropriate actions in order to mitigate the risk such as evacuation of the area in abrupt cases and changing the aggressive mine plans in gradual cases. In other words, the high stress zones can be distinguished at their early stage and correspondingly optimizing the mining practices to prevent progression of high stress zones which can be ended to a rock failure. For this purpose a block cave mine was synthetically modeled and numerically analyzed in order to evaluate the capability of the passive seismic tomography in determining the induced stress changes through seismic velocity measurement in block cave mines. Next the same method is used for a narrow vein mine as a case study to determine the velocity patterns corresponding to each major seismic event. / Doctor of Philosophy / Mining activities unbalance the stress distribution underground, which is called mining induced stress. The stability of the underground mines is jeopardized due to accumulation of induced stress thus it is critical for the safety of the miners to prevent excessive induced stress accumulation. Hence it is important to continuously monitor the rock mass performance under the induced stress which can form cracks or slide along the existing discontinuities in rock mass. Cracking or sliding releases energy as the source of the seismic wave propagation in underground rocks, known as a seismic event. The velocity of seismic wave propagation can be recorded and monitored by installing seismic sensors such as geophones underground. The seismic events are similar to earthquakes but on a much smaller scale. The strength of seismic events is measured on a scale of moment magnitude. The strongest earthquakes in the world are around magnitude 9, most destructive earthquakes are magnitude 7 or higher, and earthquakes below magnitude 5 generally do not cause significant damage. The moment magnitude of mining induced seismic events is typically less than 3. In order to monitor mining induced stress variations, the propagated seismic wave velocity in rock mass is measured by a series of mathematical computations on recorded seismic waves called passive seismic tomography, which is similar to the medical CT-scan machine. Seismic wave velocity is like the velocity of the vibrating particles of rock due to the released energy from a seismic event. This study proposes to investigate trends of seismic velocity variations before and after each seismic event. The areas which are highly stressed have higher seismic velocities compared to the average seismic velocity of the entire area. Therefore, early recognition of highly stressed zones, based on the seismic velocity amount prior the occurrence of major seismic events, will be helpful to apply optimization of mining practices to prevent progression of high stress zones which can be ended to rock failures. For this purpose, time-dependent seismic velocity of a synthetic mine was compared to its stress numerically. Then, the seismic data of a narrow vein mine is evaluated to determine the seismic velocity trends prior to the occurrence of at least five major seismic events as the case study.
15

Self-organised criticality and seismicity

Boonzaaier, Leandro 12 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2002. / ENGLISH ABSTRACT: In this thesis we give an overview of self-organised criticality and its application to studying seismicity. We recall some of the basic models and techniques for studying self-organised critical systems. We discuss one of these, the sandpile model, in detail and show how various properties of the model can be calculated using a matrix formulation thereof. A correspondence between self-organised critical systems and seismicity is then proposed. Finally, we consider the timeevolution of the sandpile model by using a time-to-failure analysis, originally developed in the study of seismicity and obtain results for the sandpile model that show similarities with that of the analyses of seismic data. / AFRIKAANSE OPSOMMING: In hierdie tesis gee ons 'n oorsig van self-organiserende kritikaliteit en die toepassing daarvan in die studie van seismisiteit. Ons beskryf die basiese modelle en tegnieke vir die studie van self-organiserende kritiese sisteme. Ons bespreek een van hierdie, die sandhoopmodel, in besonderheid en wys hoe om verskeie eienskappe van die model te bereken deur gebruik te maak van 'n matriks-formulering daarvan. Ons stel dan 'n korrespondensie tussen self-organiserende kritiese sisteme en seismisiteit voor. Ter afsluiting ondersoek ons die tydontwikkeling van die sand hoopmodel deur gebruik te maak van 'n deurbreektyd analise wat oorspronklik in die bestudering seismiese data ontwikkel is. Die resultate vir die analise van die sandhoopmodel toon ooreenkomste met dit wat verkry word vir seismiese data.
16

Quantitative aspects of mining induced seismicity in a part of the Welkom Goldfield

Ferreira, Ricardo Isidro Loureiro January 1997 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Scieuce in Geophysics . / Rockbursts continue to be one of the more high profile and problematic worker hazards in the South African gold mining industry. Recent advances in the technology of seismic monitoring systems and seismic data analysis and interpretation methods hold considerable promise towards improving the success rate of rockburst control measures. This study tests different methods for the evaluation of the response of geological structures to mining induced stress changes. A small part of Western Holdings Gold Mine in the Welkom goldfield -- the Postma Area -- offers a challenge because of its geological complexity, accessibility and high incidence of seismicity. The sensitivity of the local network to ground motions in this area of interest and the expected spatial location accuracy is established and deemed adequate for a detailed investigation of seismic activity. The local mining geometry, geology and methods of mining are discussed. The fractured state of the rock mass observed in situ, close to the stope faces, is in agreement with the results of numerical elastic modelling and the high stresses inferred seismically. Almost immediately after the incidence of a large event (ML 3.7) which occurred close to one end of a dyke, an increased rate of seismic activity became apparent at another part of the same dyke, some 250 m to the east. A change in the state of seismic stress, before and after the large event, points to a transfer of stress along this geological discontinuity. A quantitative analysis of recorded seismicity indicates spatial and temporal variations in the state of stress and strain throughout the rock mass surrounding Mining excavations. The elastic stress modelling performed routinely by rock mechanics engineers in the deep gold mines is, by itself, incapable of catering for the rheological nature of the rock mass, but taken together with independent seismic evaluations of a fault orthogonal to a highly stressed dyke it is shown that both methods are mutually complementary and can enhance the assessment of the seismic instability of the structures. A back-analysis is conducted on ten large seismic events (ML> 2.5) to identify precursors. These show that the timely recognition of high gradients in physical seismic parameters pertaining to strain rate and stress in time and space immediately prior to major seismic events is a real and practical possibility, as such constituting an early warning mechanism. The fore-warning of a large event is best served by an analysis of seismicity over the short term (weeks or days) through time-history variations and/or contouring of various seismic parameters, although long-term seismic responses (months or weeks) characterise specific patterns and trends which are useful in the forecast. / AC2018
17

Estudo integrado da camada de basalto em Bebedouro - SP, Bacia do Paraná: relocalização dos sismos induzidos por poços tubulares / Integrated Study of the basalt layer in Bebedouro SP, Paraná Basin: Relocation of earthquakes induced by wells.

Salamanca, Gabriel Enrique Dicelis 03 August 2011 (has links)
Dicelis, G. E., Estudo Integrado da Camada de Basalto em Bebedouro SP, Bacia do Paraná: Relocalização dos sismos induzidos por poços tubulares, 2011. Dissertação de Mestrado Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, SP. A partir de 2004, a população do distrito de Andes, Bebedouro (SP), passou a sentir pequenos tremores de terra. Uma rede sismográfica instalada em 2005 mostrou que os sismos locais são induzidos por poços tubulares profundos usados para irrigação de lavouras (Assumpção et al., 2007). Neste projeto de pesquisa foi melhorada a localização desses sismos, usando análise da forma de onda e os tempos de chegada das ondas P e S, com o propósito de efetuar uma melhor análise da sismicidade induzida. Para isto foram aproveitados resultados de estudos anteriores como sísmica de refração, dispersão de ondas de superfície, sondagem elétrica vertical, função do receptor e TDEM. Para obter o melhor modelo de velocidades 1D, foram testados diferentes algoritmos de localização e técnicas de relocalização de hipocentros, para aproximadamente 3000 microtremores gravados pela rede sismográfica no período 2005 2010. Os resultados mostraram que as profundidades focais dos sismos relocalizados ficaram em sua maioria dentro da camada de basalto, a menos de 500m de profundidade. Este resultado confirma que os sismos estão relacionados com a perturbação do equilíbrio de tensões (pressões) geológicas, em zonas de fraturas já existentes dentro da camada de basalto. Foi usada uma combinação de correlação cruzada e tempos de chegada para analisar um conjunto de sismos, baseada na similaridade dos seus sismogramas. Foi melhorada a distribuição hipocentral o que permitiu determinar claramente uma solução do plano focal de um cluster, o que indicou a existência de uma falha normal de orientação WNW-ESSE e mergulho para o norte, com extensão NNE-SSW (eixo-T). Este mecanismo pode complementar os dados de esforços na região sudeste. / Dicelis, G. E., Integrated Study of the basalt layer in Bebedouro SP, Paraná Basin: Relocation of earthquakes induced by wells, 2011. Master dissertation - Institute of Astronomy, Geophysics and Atmospheric Sciences of the University of Sao Paulo, Brazil. Since 2004 the population of the district of Andes, Bebedouro SP, began to feel small earthquakes. A seismograph network installed in 2005 showed that earthquakes are caused by local deep wells used for irrigation of crops (Assumpção et al., 2007). In this research project we improved the location of these earthquakes, using analysis of waveform and the arrival times of P and S waves, in order to make a better analysis of the induced seismicity. To better relocate the events we determined a velocit model using results of previous studies such as seismic refraction, surface wave dispersion, vertical electrical sounding, receiver function and TDEM. The best fit 1D model was achieved testing different localization algorithms and techniques for relocation of hypocenters for approximately 3000 microtremors recorded by seismograph network to the period 2005 2010. The results showed that the focal depths of the relocated earthquakes are mostly within the basalt layer, less than 500m depth. This confirms that the earthquakes are related with disturbance of geological stresses (pressures) in pre-existing fracture zones within the basalt layer. We used a combination of cross-correlation and arrival times for analyze a set of earthquakes, based on the similarity of their recorded seismograms. The hypocentral distribution was improved allowing a clear determination of the best fit fault plane solution for one cluster, which indicates the existence of a normal fault with direction WNW-ESE and dip to the north, with NNE-SSW extension (T-axis). This mechanism may complement the stress data in the Southeast Brazil.
18

Quantitative aspects of mining induced seismicity in a part of the Welkom Goldfield /cRicardo Isidro Loureiro Ferreira.

Ferreira, Ricardo Isidro Loureiro. January 1997 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the degree of Master of Science in Geophysics . / Rockbursts continue to be one of the more high profile and problematic worker hazards in the South African gold mining industry. Recent advances in the technology of seismic monitoring systems and seismic data analysis and interpretation methods hold considerable promise towards improving the success rate of rockburst control measures. This study tests different methods for the evaluation of the response of geological structures to mining induced stress changes. A small part of Western Holdings Gold Mine in the Welkom goldfield -- the Postma Area -- offers a challenge because of its geological complexity, accessibility and high incidence of seismicity. The sensitivity of the local network to ground motions in this area of interest and the expected spatial location accuracy is established and deemed adequate for a detailed investigation of seismic activity. The local mining geometry, geology and methods of mining are discussed. The fractured state of the rock mass observed in situ, close to the stope faces, is in agreement with the results of numerical elastic modelling and the high stresses inferred seismically. Almost immediately after the incidence of a large event (ML 3.7) which occurred close to one end of a dyke, an increased rate of seismic activity became apparent at another part of the same dyke, some 250 m to the east. A change in the state of seismic stress, before and after the large event, points to a transfer of stress along this geological discontinuity. A quantitative analysis of recorded seismicity indicates spatial and temporal variations in the state of stress and strain throughout the rock mass surrounding Mining excavations. The elastic stress modelling performed routinely by rock mechanics engineers in the deep gold mines is, by itself, incapable of catering for the rheological nature of the rock mass, but taken together with independent seismic evaluations of a fault orthogonal to a highly stressed dyke it is shown that both methods are mutually complementary and can enhance the assessment of the seismic instability of the structures. A back-analysis is conducted on ten large seismic events (ML 2.5) to identify precursors. These show that the timely recognition of high gradients in physical seismic parameters pertaining to strain rate and stress in time and space immediately prior to major seismic events is a real and practical possibility, as such constituting an early warning mechanism. The fore-warning of a large event is best served by an analysis of seismicity over the short term (weeks or days) through time-history variations and/or contouring of various seismic parameters, although long-term seismic responses (months or weeks) characterise specific patterns and trends which are useful in the forecast. / AC 2018
19

Liquefaction of Early Age Cemented Paste Backfill

Saebimoghaddam, Abdolreza 01 September 2010 (has links)
Modern mines require systems that quickly deliver backfill to support the rock mass surrounding underground openings. Cemented Paste Backfill (CPB) is one such backfilling method, but concerns have been raised about CPB’s liquefaction susceptibility especially when the material has just been placed, and if it is exposed to earthquakes or large mining induced seismic events. Conventional geotechnical earthquake engineering for surface structures is now relatively advanced and well accepted, and so the objective of this thesis is to consider how that framework might be extended to assess the liquefaction potential of CPB. Seismic records were analyzed for earthquakes and for large mining induced events. Important seismological trends were consistent for rockbursts and earthquakes when the signals were recorded at distances as proximate as one kilometre, suggesting that the conventional earthquake engineering approach might plausibly be adapted for such design situations. For production blasts and for more proximate locations to rockbursts, much higher frequencies dominate and therefore new design methods may be required. Monotonic triaxial tests conducted on normally consolidated uncemented mine tailings demonstrated that the material is initially contractive up to a phase transition point, beyond which dilation occurs. Most importantly the material never exhibits unstable strain softening behaviour in compression, and only temporary or limited liquefaction in extension. The addition of 3% binder results in initial sample void ratios that are even higher than their uncemented counterparts, and yet the material friction is slightly enhanced when tested at 4 hours cure. These results suggest that the flow liquefaction phenomenon commonly associate with undrained loose sand fills will not occur with paste backfill. Cyclic triaxial test results analyzed in terms of number of cycles to failure for a given cyclic stress ratio exhibited a trend consistent with previous tests on similar materials. However, the addition of 3% binder and testing at 4 hours cure resulted in an order of magnitude larger number of cycles to failure – a surprising and dramatic increase, suggesting good resistance of the material to cyclic mobility. Future research is recommended to build on these results and develop more robust methods for liquefaction assessment of CPB.
20

Liquefaction of Early Age Cemented Paste Backfill

Saebimoghaddam, Abdolreza 01 September 2010 (has links)
Modern mines require systems that quickly deliver backfill to support the rock mass surrounding underground openings. Cemented Paste Backfill (CPB) is one such backfilling method, but concerns have been raised about CPB’s liquefaction susceptibility especially when the material has just been placed, and if it is exposed to earthquakes or large mining induced seismic events. Conventional geotechnical earthquake engineering for surface structures is now relatively advanced and well accepted, and so the objective of this thesis is to consider how that framework might be extended to assess the liquefaction potential of CPB. Seismic records were analyzed for earthquakes and for large mining induced events. Important seismological trends were consistent for rockbursts and earthquakes when the signals were recorded at distances as proximate as one kilometre, suggesting that the conventional earthquake engineering approach might plausibly be adapted for such design situations. For production blasts and for more proximate locations to rockbursts, much higher frequencies dominate and therefore new design methods may be required. Monotonic triaxial tests conducted on normally consolidated uncemented mine tailings demonstrated that the material is initially contractive up to a phase transition point, beyond which dilation occurs. Most importantly the material never exhibits unstable strain softening behaviour in compression, and only temporary or limited liquefaction in extension. The addition of 3% binder results in initial sample void ratios that are even higher than their uncemented counterparts, and yet the material friction is slightly enhanced when tested at 4 hours cure. These results suggest that the flow liquefaction phenomenon commonly associate with undrained loose sand fills will not occur with paste backfill. Cyclic triaxial test results analyzed in terms of number of cycles to failure for a given cyclic stress ratio exhibited a trend consistent with previous tests on similar materials. However, the addition of 3% binder and testing at 4 hours cure resulted in an order of magnitude larger number of cycles to failure – a surprising and dramatic increase, suggesting good resistance of the material to cyclic mobility. Future research is recommended to build on these results and develop more robust methods for liquefaction assessment of CPB.

Page generated in 0.0383 seconds