• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

O desenvolvimento das metáforas do conceito de infinito na educação matemática

Cristina Silveira Monteiro, Lúcia January 2003 (has links)
Made available in DSpace on 2014-06-12T23:01:58Z (GMT). No. of bitstreams: 2 arquivo8828_1.pdf: 643699 bytes, checksum: f8ad5f1474a8af368958ff7a224a31b4 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2003 / Este trabalho aborda o conceito de infinito a partir da perspectiva de seu desenvolvimento histórico, dos aspectos cognitivos relacionados à sua compreensão e de suas implicações para a educação matemática. Encontra-se, pois, o conceito de infinito no seio do desenvolvimento das ciências, e por ser um conceito com o qual não se tem experiência empírica direta, sua compreensão e descrição ficam diretamente relacionadas a níveis de abstrações, que são os desenvolvimentos conceituais expressos pelas linguagens. Imprime-se, então, uma relação dinâmica entre esse conceito e o desenvolvimento do pensamento matemático, através de suas representações que descrevem o infinito. O foco de interesse, nesta pesquisa, é tentar entender como o conceito de infinito contribui para o desenvolvimento do pensamento abstrato. As conclusões apóiam-se em uma abordagem cognitiva, baseada na relação entre o desenvolvimento da linguagem e do pensamento, destacando a importância dos signos e, principalmente, da análise cognitiva das idéias matemáticas, que procura estabelecer como a mente incorpora, representa e atribui existência à matemática. A pesquisa e as análises são frutos de uma concepção dialética sobre o desenvolvimento da linguagem e do pensamento. A pesquisa foi realizada, aplicando-se um problema histórico, o paradoxo de Zenão (450 a. C.) e foi construída a partir de diálogos com: alunos da última série do ensino fundamental, professores licenciados em matemática e matemáticos pós-graduados que atuam em cursos de licenciatura e bacharelado em matemática. O paradoxo escolhido apresenta aspectos polêmicos desde aquela época, até os dias atuais e, evidentemente, envolve os conceitos de infinitamente grande e infinitamente pequeno, objetos dessa pesquisa. Nas análises, surge um destaque para a diferença que há entre a linguagem matemática que tratou o paradoxo de Zenão, com uma visão estática, como na antiguidade, e com uma visão dinâmica, presente na linguagem matemática atual, que também está voltada para a interpretação de fenômenos e, por conseguinte, para uma interpretação do problema citado. A principal categoria dialética encontrada nessa análise foi a categoria realidade-possibilidade

Page generated in 0.0762 seconds