• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 36
  • 15
  • 13
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 215
  • 29
  • 21
  • 19
  • 19
  • 18
  • 17
  • 15
  • 15
  • 14
  • 14
  • 14
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Design and Optimization of Boundary Layer Ingesting Propulsor

Mandal, Pritesh January 2019 (has links)
No description available.
122

Particle Redistribution in Serpentine Engine Inlets

Potts, Ian January 2020 (has links)
No description available.
123

Adjoint Design Optimization for Boundary Layer Ingesting Inlet Guide Vanes with Distorted Inlet Profiles in SU2

Baig, Aman uz zaman January 2020 (has links)
No description available.
124

Non-AXisymmetric Aerodynamic Design-Optimization System with Application for Distortion Tolerant Hybrid Propulsion

Kumar, Sandeep January 2020 (has links)
No description available.
125

Ecological Investigations of Chukars in Western Utah

Larsen, Randy T. 11 July 2006 (has links) (PDF)
This thesis presents three separate manuscripts in chapter format dealing with the ecology of Chukars (Alectoris chukar) in western North America. All three manuscripts have been formatted for publication in professional journals. Chapter one confirms discovery of ingested lead pellets in Chukars across a broad region of western Utah including all four western counties sampled. Prevalence rates were 1.9% (n=105) for crops and 10.7% (n=75) of gizzards showing no evidence of penetration wounds. Ingestion is likely related to grit size preferences that are consistent with common shot sizes. The second chapter describes watering patterns and water-site selection of Chukars. Chukars watered during daylight hours with a modal hour from 1100 hours to 1200hours. Annual patterns suggest no use of water sources from November to May with first visits occurring in June of each year and last visits in October. Shrub canopy cover was the only variable to discriminate between use and non-use watering sources (P < 0.01). Cross validation showed a predictive success rate of 84%. Significant differences were found between use and non-use sites in terms of protective cover (P < 0.01), but not total cover (P > 0.05). Chukars were found to have a shrub canopy threshold near 11%; water sources meeting this threshold received use, whereas those not meeting this threshold did not. Chapter three challenges several claims postulating negative conservation implications relative to exotic Chukars in North America. These claims were proven to be unfounded with no evidence of cheatgrass (Bromus tectorum) dispersal despite widespread utilization. Furthermore, guzzlers designed to benefit Chukar populations were heavily utilized by native species and only slightly (two species at three sites) by other exotics. These three manuscripts illuminate several areas of Chukar ecology and represent a significant advancement in our understanding of this bird and its management.
126

Development of Diagnostic Tools for Use in a Gas Turbine Engine Undergoing Solid Particulate Ingestion

Olshefski, Kristopher Thomas 30 May 2023 (has links)
Aircraft propulsion systems can be exposed to a variety of solid particulates while operating in either arid or other hazardous environments. For conventional takeoff and landing aircraft, debris can be ingested directly into the gas turbine powerplant which is exposed to the ambient environment. For helicopters and other vertical takeoff and landing (VTOL) aircraft, rotor down wash presents a particular threat during takeoff and landing operations as significant amounts of groundlevel particles can be entrained in the surrounding air and subsequently ingested into the engine. Prolonged exposure to particle ingestion events leads to premature engine wear and, in extreme cases, rapid engine failure. Expanding our current understanding of these events is the first step to enabling engine manufacturers to mitigate these damage mechanisms through novel engine designs. The work described in this dissertation is aimed at increasing the scientific understanding of these ingestion events through the development of two distinct diagnostic instruments. First, an anisokinetic particle sampling probe is designed to be used for in-situ particle sampling inside of a gas turbine engine compressor. Offtake of particles during engine operation in dusty conditions will provide researchers with an improved understanding of particle breakage tendency and component erosion susceptibility. Both experimental and numerical investigations of the probe present a comprehensive realization of probe performance characteristics. Secondly, a novel particle visualization technique is developed to provide users with particle distribution and particle mass flow estimates at the inlet of a gas turbine engine. This technique yields both time-resolved and time-averaged quantities, allowing users to have a comprehensive account of particles entering the engine. / Doctor of Philosophy / Foreign debris ingested into aircraft engines can cause serious damage and degrade their performance. The source of these ingested particles may be from atmospherically suspended ash due to volcanic eruption, high altitude ice crystals, or ground-level sand and dust. Both conventional takeoff and landing aircraft and vertical takeoff and landing (VTOL) aircraft are at risk. In extreme cases, exposure to a particle-laden atmosphere has resulted in catastrophic engine failure and loss of life. For this reason, researchers are intensely focused on mitigating the effects of these harmful particulates. The work described in this dissertation establishes two novel diagnostic capabilities. These are aimed at providing the research community with an increased understanding of how particles enter an aircraft powerplant as well as describe the behavior of these particles as they traverse the initial stages of an engine. The first instrument described is a particle sampling probe which is meant to be inserted into the compressor section of a gas turbine engine. This probe will offtake particles as they enter the engine after they have had an opportunity to interact with the rotating components of the compressor. In doing so, researchers gain an improved understanding of particle breakage tendency and component erosion susceptibility. The second instrument provides a snapshot of particle distribution at the inlet of the engine as well as estimates of total particle mass flow. This capability allows researchers to have a precise understanding of the quantity of ingested material as well as a qualitative understanding of how the inflow distribution of particles looks. Each of the developed tools represent a first step to enabling engine manufacturers to mitigate these damage mechanisms through novel engine designs.
127

Active Flow Control of a Boundary Layer Ingesting Serpentine Diffuser

Harrison, Neal A. 04 August 2005 (has links)
The use of serpentine boundary layer ingesting (BLI) diffusers offers a significant benefit to the performance of Blended Wing Body aircraft. However, the inherent diffuser geometry combined with a thick ingested boundary layer creates strong secondary flows that lead to severe flow distortion at the engine face, increasing the possibility of engine surge. This study investigated the use of enabling active flow control methods to reduce engine-face distortion. An ejector-pump based system of fluidic actuators was used to directly manage the diffuser secondary flows. This system was modeled computationally using a boundary condition jet modeling method, and tested in an ejector-driven wind tunnel facility. This facility is capable of simulating the high-altitude, high subsonic Mach number conditions representative of BWB cruise conditions, specifically a cruise Mach number of 0.85 at an altitude of 39,000 ft. The tunnel test section used for this experiment was designed, built, and tested as a validation tool for the computational methods. This process resulted in the creation of a system capable of efficiently investigating and testing the fundamental mechanisms of flow control in BLI serpentine diffusers at a minimum of time and expense. Results of the computational and wind tunnel analysis confirmed the large potential benefit of adopting fluidic actuators to control flow distortion in serpentine BLI inlets. Computational analysis showed a maximum 71% reduction in flow distortion at the engine face through the use of the Pyramid 1 ejector scheme, and a 68% reduction using the Circumferential ejector scheme. However, the flow control systems were also found to have a significant impact on flow swirl. The Pyramid 1 ejector scheme was found to increase AIP flow swirl by 64%, while the Circumferential ejector scheme reduced flow swirl by 30%. Computational analyses showed that this difference was the result of jet interaction. By keeping the jet flows separate and distinct, the diffuser secondary flows could be more efficiently managed. For this reason, the most practically effective flow control scheme was the Circumferential ejector scheme. Experimental results showed that the computational analysis slightly over-predicted flow distortion. However, the trends are accurately predicted despite slight variances in freestream Mach number between runs and a slightly lower tested altitude. / Master of Science
128

A QUANTITATIVE APPROACH TO VARIABLE SE-MARKING IN SPANISH INGESTIVE VERBS

De la Mora, Juliana 29 July 2011 (has links)
No description available.
129

Learning processes in food intake

Jarvandi, Soghra January 2009 (has links)
No description available.
130

Learning processes in food intake

Jarvandi, Soghra January 2008 (has links)
No description available.

Page generated in 0.0808 seconds