• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 102
  • 36
  • 15
  • 13
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 215
  • 29
  • 21
  • 19
  • 19
  • 18
  • 17
  • 15
  • 15
  • 14
  • 14
  • 14
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

A COMPARISON OF DATA INGESTION PLATFORMS IN REAL-TIME STREAM PROCESSING PIPELINES

Tallberg, Sebastian January 2020 (has links)
In recent years there has been an increasing demand for real-time streaming applications that handle large volumes of data with low latency. Examples of such applications include real-time monitoring and analytics, electronic trading, advertising, fraud detection, and more. In a streaming pipeline the first step is ingesting the incoming data events, after which they can be sent off for processing. Choosing the correct tool that satisfies application requirements is an important technical decision that must be made. This thesis focuses entirely on the data ingestion part by evaluating three different platforms: Apache Kafka, Apache Pulsar and Redis Streams. The platforms are compared both on characteristics and performance. Architectural and design differences reveal that Kafka and Pulsar are more suited for use cases involving long-term persistent storage of events, whereas Redis is a potential solution when only short-term persistence is required. They all provide means for scalability and fault tolerance, ensuring high availability and reliable service. Two metrics, throughput and latency, were used in evaluating performance in a single node cluster. Kafka proves to be the most consistent in throughput but performs the worst in latency. Pulsar manages high throughput with low message sizes but struggles with larger message sizes. Pulsar performs the best in overall average latency across all message sizes tested, followed by Redis. The tests also show Redis being the most inconsistent in terms of throughput potential between different message sizes
162

Causes, Extent, and Consequences of Lead-Pellet Ingestion by Chukars (Alectoris Chukar) in Western Utah: Examining Habitat, Search Images, and Toxicology

Bingham, R. Justin 01 May 2011 (has links)
Lead ingestion adversely affects humans and over 130 species of wildlife. Wild chukars (Alectoris chukar) are documented to ingest lead, but the causes and consequences of this ingestion are poorly understood. The objectives of this research were to 1) examine the influence of habitat use, the hunting season, and seasonal climate on the extent and severity of lead ingestion by chukars in western Utah, 2) assess the effects of habitat use, feeding behaviors, and lead density on the causes of lead-pellet ingestion in captive and wild chukars, and 3) investigate the consequences of lead-pellet ingestion in captive chukars as a function of lead weathering, diet, and wild onion (Allium spp.) supplementation. I documented that 11.5% (n=54) of my sample of wild-harvested chukars contained an ingested lead pellet or increased liver lead (≥ 0.5 ppm). In conjunction with data from captive chukars dosed with lead, I was able to differentiate between bone-lead concentrations resulting from chronic or acute exposure to lead. I documented individuals from seven different mountain ranges with an ingested lead pellet or increased liver lead. I recorded 19 instances of ingested lead during June-October (n=221) and 20 during November-January (n=193). I observed 14 events of increased liver lead for June-October (n=97), but did not find a single occurrence during November-January (n=24). The frequency of lead-pellet ingestion by captive chukars increased significantly when given a greater density of lead pellets with food and when fed a diet with seeds and grit pebbles that were similar visually to lead pellets. I estimated a density of 1,712,134 pellets/Ha in soils at an area used for target shooting. I found significantly more lead pellets in soils near springs than near guzzlers or reference points. I calculated that as many as 58,600 pellets/Ha may be present in soils near springs, and up to 2,445 pellets/Ha in soils surrounding guzzlers and reference points. One #6 lead pellet was able to induce morbidity and mortality in captive chukars. A mixed-seed diet and lead weathering exacerbated the effects of lead ingestion, whereas wild onion supplementation alleviated them.
163

Aerodynamic Behavior of Axial Flow Turbomachinery Operating in Transient Transonic Flow Regimes

Heinlein, Gregory S. January 2019 (has links)
No description available.
164

An Experimental Investigation of a Goldschmied Propulsor

Roepke, Joshua 01 August 2012 (has links) (PDF)
A wind tunnel investigation of an axisymmetric bluff body, known as a Goldschmied propulsor, was completed. This model conceptually combines boundary layer control and boundary layer ingestion into a single complementary system that is intended to use energy to reduce the axial force on the body by eliminating separation and increasing the pressure recovery aft of the body’s maximum thickness. The goal of the current project was to design, fabricate, and fully document the performance of a wind tunnel model incorporating the Goldschmied propulsor concept and complete an examination of its aerodynamic performance. The investigation took place at California Polytechnic State University, San Luis Obispo in the Aerospace Engineering Department’s subsonic 3ft by 4ft wind tunnel. The model is 38.5 inches in length and 13.5 inches in diameter with a discrete suction slot at 85% of the body length and an embedded propulsor that provides the suction flow, expelling it out of the model’s aft end. The experiment included measurements of surface pressure, total axial force, suction mass flow rate, fan thrust, fan torque, fan speed, and input fan power. The size of the suction slot and amount of input fan power were the main test variables in the 54 data point test matrix that was completed at a length Reynolds number of 1.34 million and a tunnel speed of 66 ft/s (20 m/s). The model was able to achieve fully attached flow on the aftbody with as little as 100W of input power and a net positive (forward) axial force coefficient of 0.12 with as little as 200W of input power. The model was also able to achieve a peak axial pressure force coefficient of 0.005 in the forward direction with an input power of 500W and a slot gap of 1.6% of the body length. A slightly lower axial pressure force coefficient of 0.0045 was achieved with only 200W of input power and a slot gap of 0.7% of the body length. The peak axial pressure force for most tested slot gaps occurred at about 200W of input power, and a slot gap of 0.7% of the body length resulted in the best overall performance for most input power settings. Two different suction slot configurations, a simple gap and a cusp, were tested, and no significant performance differences were seen between them. The pressure coefficient data showed similar trends as test data from 1956 of a similar model at higher Reynolds number, but it did not show complete agreement. Despite these positive aspects of the investigation, a simple power based comparison between the collected data and a conventional non-integrated propulsor does not show a performance improvement for the Goldschmied propulsor.
165

Environmental and Nutritional Chemistry of Wild Harvested Blueberries vs. Commercial Blueberries: Depositional and Uptake Chemistry and Human Health Assessment

Maynard, Christy Ann Marie 30 November 2023 (has links)
In northern Saskatchewan, Canada, there are several active and decommissioned uranium mines and mills licensed by Canada's nuclear regulator, the Canadian Nuclear Safety Commission (CNSC). In these areas, Indigenous communities harvest traditional foods and Canadian diet studies have identified wild berries as an important part of their diet (Furgal, Powell, & Myers, 2005), (Roseanne C. Schuster, 2011), (Health Canada, 2010). Food ingestion is recognized as an exposure pathway of anthropogenic and naturally occurring radioactive materials and trace metals (Kuhnlein & Chan, 2000) and some communities may be concerned their traditional foods are contaminated from facility operations. Wild blueberries and the soil the plant roots grew in were sampled approximately 10-25 kms away from CNSC-licensed facilities in northern Saskatchewan. As a comparison, commercially-available blueberries and soil were collected from Ontario farms and blueberries were obtained from grocery stores. Samples were analyzed for trace elemental concentrations by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and radionuclide activity concentrations were measured. Annual ingestion dose for blueberry consumption was conservatively estimated to be 0.0079 mSv/a. The blueberry results were compared to international guidelines and published literature and were not found to pose an ingestion health risk. The activity concentrations in blueberries ranged between 0.001-0.006 Bq/g d.w. for ²¹⁰Po and 0.003-0.005 Bq/g d.w. for ²¹⁰Pb and the concentrations of cadmium and arsenic in blueberries ranged between 0.002-0.07 μg/g and 0.0002-0.007 μg/g, respectively. This research project identifies geochemical relationships between radionuclides and trace elements in blueberries, examines the uptake chemistry, environmental cycling of radionuclides and trace elements, and the soil mineralogy and composition, helps inform CNSC's regulatory decision-making process, and supports future human health risk communication with Indigenous communities.
166

Evaluation of a Particle Sampling Probe to Measure Mass Concentration in Particle-Laden Flows

Coulon, Thomas Alexander 11 May 2022 (has links)
Particle ingestion is a prevalent issue for jet engines. During operation, sand and ash particles enter the engine and can cause serious problems, including erosion and buildup of Calcia-Magnesia-Alumina-Silicate (CMAS) deposits. Analyzing the particle mass concentration of the airflow can help better understand this issue. This can best be accomplished by sampling particles with a sampling probe at various locations within an engine. The present study is a continuation of a previous study that developed and evaluated a novel sampling probe. The present study seeks to modify the probe to optimize its sampling capability, to evaluate the aerodynamics of the modified probe through Particle Imaging Velocimetry (PIV), to gain insight on its ability to sample smaller particles, to characterize the movement of larger particles as they are sampled using Particle Tracking Velocimetry (PTV), and to develop a method to physically measure particle mass concentration. To accomplish this, a free jet rig was used to create a particle-laden flow, and the probe was placed at the jet exit to sample particles. A laser and camera system were used to capture images of the probe for PIV and PTV. A particle collection apparatus was designed to collect and weigh particles captured by the probe to measure mass concentration. The PIV results indicate that the probe exhibits sub-isokinetic sampling behavior. However, the PTV results show that large particles are not affected by non-isokinetic conditions. The mass concentration measured by the probe decreases when the flow Mach number increases due to the higher flow velocity causing particles to be spaced further apart. The mass concentration measured by the probe decreases when the probe yaw angle increases due to lower projected probe inlet area. / Master of Science / Sand and ash particles are harmful to jet engines. Particle ingestion can greatly affect the useful life of the engine. Particles erode the machinery within the engine, and they also melt to form mineral deposits, all of which degrades performance. One method that is being developed to better understand this problem is to sample particles at various locations in the engine using a sampling probe. The concept of a sampling probe is simple: particles are captured by the probe inside the engine, and the particles are collected outside the engine for analysis. This would give insight on particle behavior in the engine. The present study is a continuation of a previous study that developed and evaluated a novel sampling probe. The present study seeks to modify the probe to optimize its sampling capability, to use advanced imaging techniques to characterize the movement of air and particles entering the probe, and to safely collect and weigh particles captured by the probe. A compressed air jet was used to accelerate particles and create a particle-laden environment akin to the inside of an engine. The probe was placed at the exit of the jet to sample particles. A laser and camera system were used to capture images of the probe during the particle-sampling process. A particle collection apparatus was designed to safely collect and store particles captured by the probe for weighing. The image and weight data were then used to make conclusions about the probe's sampling capability.
167

Development of Comprehensive Dynamic Damage Assessment Methodology for High-Bypass Air Breathing Propulsion Subject to Foreign Object Ingestion

Song, Yangkun 10 November 2016 (has links)
Foreign object ingestion (FOI) into jet engines is a recurring scenario during the operation life of aircraft. Objects can range from as small as a pebble on the tarmac to the size of a large bird. Among the potential ingestion scenarios, damage caused by smaller objects may be considered to be negligible. Alternatively, larger objects can initiate progressive damage, potentially leading to catastrophic failure, compromising the integrity of the structure, and endangering the safety of passengers. Considering the dramatic increase in air traffic, FOI represents a crucial safety hazard, and must be better understood to minimize possible damage and structural failure. The main purpose of this study is to develop a unique methodology to assess the response and dynamic damage progression of an advanced, high-bypass propulsion system in the event of an FOI during operation. Using a finite element framework, a unique modeling methodology has been proposed in order to characterize the FOI response of the system. In order to demonstrate versatility of the computational analysis, the impact characteristics of two most common foreign object materials, bird and ice, were investigated. These materials were then defined in finite element domain, verified computationally, and then validated against the existing physical experiments. In addition to the mechanics of the two FOI materials, other material definitions, used to characterize the structures of the high-bypass propulsion system, were also explored. Both composite materials and rate dependent definitions for metal alloys were investigated to represent the damage mechanics in the event of an FOI. Subsequently, damage sequence of high-bypass propulsion systems subject to FOI was developed and assessed, using a uniquely devised Fluid-Structure Interaction (FSI) technique. Using advanced finite element formulation, this approach enabled the accurate simulation of the comprehensive damage progression of the propulsion systems by including aerodynamic interaction. Through this strategy, fluid mechanics was combined with structural mechanics in order to simulate the mutual interaction between both continua, allowing the interpretation of both the additional damage caused by the fluid flow and disrupted aerodynamics induced by the dynamic deformation of the fan blade. Subsequently, this multidisciplinary-multiphysics computational approach, in the framework of the comprehensive analysis methodology introduced, enabled the effective determination of details on the overall progressive impact damage, not traditionally available to propulsion designers. / PHD
168

Development of a Novel Probe for Engine Ingestion Sampling in Parallel With Initial Developments of a High-speed Particle-laden Jet

Collins, Addison Scott 07 December 2021 (has links)
Particle ingestion remains an important concern for turbine engines, specifically those in aircraft. Sand and related particles tend to become suspended in air, posing an omnipresent health threat to engine components. This issue is most prevalent during operation in sandy environments at low altitudes. Takeoffs and landings can blow a significant quantity of particulates into the air; these particulates may then be ingested by the engine. Helicopters and other Vertical Takeoff and Landing (VTOL) aircraft are at high risk of engine damage in these conditions. Compressor blades are especially vulnerable, as they may encounter the largest of particles. Robust and thorough experimental and computational studies have been conducted to understand the relationships between particle type, shape, and size and their effects on compressor and turbine blade wear. However, there is a lack of literature that focuses on sampling particles directly from the flow inside an engine. Instead, experimental studies that estimate the trajectories and behavior of particles are based upon the resulting erosion of blades and the expected aerodynamics and physics of the region. It is important to close this gap to fully understand the role of particulates in eroding engine components. This study investigated the performance of a particle-sampling probe designed to collect particles after the first compressor stage of a Rolls-Royce Allison Model 250 turboshaft engine. The engine was not used in this investigation; rather, a rig that creates a particle-laden jet was developed in order to determine probe sampling sensitivity with respect to varying angles of attack and flow Mach number. Particle image velocimetry (PIV) was utilized to understand the aerodynamic effects of the probe on smaller particles. / Master of Science / Aircraft jet engines are constantly exposed to particles suspended in the atmosphere. Most jet engines contain several stages of spinning blades. The first series of stages near the front of the engine comprise the compressor, while the series towards the end of the engine comprise the turbine. Engines depend on compressor blades to add energy to the flow via compression and turbine blades to extract energy from the flow after combustion. Thus, they are critical for the successful operation of the engine. The constant impact of airborne particulates against these blades causes erosion, which alters blade geometry and thereby engine performance. Depending on the turbine inlet temperature, particles may melt and clog the cooling passages in turbine blades, causing serious damage as the blades reach temperatures above their intended operating regime. These damages inhibit the ability of the engine to operate properly and pose a serious safety risk if left unchecked. In literature, experimental engine erosion correlations and numerical models of particle trajectories through the engine have been developed; however, none of these studies collected particles directly from the compressor region of the engine. In this study, a probe was developed and evaluated for the purpose of sampling particulates between the first and second compressor stages of a Rolls-Royce Allison Model 250 turboshaft engine. The probe's efficacy and aerodynamic properties were analyzed such that the probe will provide processable data when inserted into the engine. The methods to obtain this data include particle-sampling and particle image velocimetry (PIV).
169

Positionnement optimal de l'activité physique pour profiter de l'effet anorexigène

Albert, Marie-Hélène 08 1900 (has links)
La balance énergétique (dépense énergétique et ingestion calorique) est au centre du contrôle de la masse corporelle. L’activité physique peut par ailleurs réduire l’appétit et l’ingestion calorique, un phénomène qu’on appelle aussi l’effet anorexigène de l’activité physique. Cependant, l’hormone orexigénique, liée à une diminution de l’appétit, diminue pendant l’exercice pour remonter rapidement après l’effort. Le but de ce mémoire était de déterminer si l’ingestion calorique est réduite quand l’exercice précède immédiatement le repas comparativement à une condition où il y a une pause entre l’exercice et le repas. Pour ce faire, douze garçons non obèses (15-20 ans) ont pris part à l’étude. Chaque participant était évalué individuellement pour les deux tâches suivantes, et ce, dans un ordre aléatoire : 1) Ex = 30 minutes d’exercice (70% VO2max) suivi immédiatement par un buffet à volonté à midi; 2) Expause = 30 minutes d’exercice (70% VO2max) suivi d’une pause de 135 minutes et d’un buffet à volonté à midi. Les visites étaient précédées par un déjeuner standard et complétées avec une collation à volonté durant l’après-midi et un souper type buffet à volonté pour souper. Alors que les résultats ont révélé que la faim était similaire en tout temps, l’ingestion calorique au diner était plus basse pour la condition Ex que pour la condition Expause (5 072 vs 5 718 kJ; p < 0,05). Aucune différence significative n’a été notée pour la collation de l’après-midi et le souper. Chose intéressante, l’ingestion calorique des lipides était plus basse au diner avec une ingestion de 1 604 kJ pour la condition Ex versus 2 085 kJ pour la condition Expause (p < 0,05). Cette étude est la première à investiguer l’effet du positionnement optimal de l’activité physique pour réduire l’ingestion calorique et elle révèle qu’être actif physiquement juste avant le repas joue un rôle sur la diminution de l’ingestion calorique indépendamment des sensations d’appétit. L’absence d’une compensation durant le reste de la journée suggère de plus qu’une balance énergétique négative, incluant une réduction de la consommation de lipides, peut être plus facilement atteinte en positionnant l’activité physique juste avant un repas. / Energy balance (energy expenditure and energy intake) is the central of body weight control. Interestingly, physical activity can suppress appetite and energy intake, a phenomenon also called exercise-induced anorexia. However, orexigenic hormone, which decrease appetite, decreases during exercise to rapidly increase following the effort. Until now, no study has examined the optimal timing of physical activity to maximize this anorexigenic effect and this was the goal of the present thesis. Concretely, this project aimed to determine if energy intake is reduced when exercise immediately precedes the meal compared to a condition in which a pause is present between the exercise and the meal. To do so, twelve non-obese boys (15-20 years old) took part in the study. Each subject was individually evaluated performing the two following tasks in a randomized order: 1) Ex=30-minute exercise bout (70% VO2max) followed immediately by an ad libitum buffet at noon; 2) Expause=30-minute exercise bout (70% VO2max) followed by a 135-minute waiting period and an ad libitum buffet at noon. The visits were preceded by a standardized breakfast and completed with an ad libitum snack in the afternoon and a buffet-type dinner. While results shown that hunger was similar at all times, energy intake at lunch was lower for the Ex condition than for the Expause condition (5,072 vs. 5,718 kJ; p<0.05). No significant difference was noted for the afternoon snack and dinner. Interestingly, caloric intake of fat was lower at lunch, with 1,604 kJ for the Ex condition versus 2,085 kJ for the Ex pause condition (p<0.05). This study is the first to investigate the effect of the timing of physical activity on energy intake, and it reveals that being physically active right before a meal does play a role in energy intake reduction independently of pre-meal appetite sensations. Also, the absence of compensation during the rest of the day suggests that a negative energy balance, including a reduction in lipid consumption, could be more easily obtained by positioning physical activity before a meal.
170

Environmental influences on the physiological and behavioural growth responses in salmonids : with reference to the growth-dip phenomenon

Sprague, Matthew January 2006 (has links)
Photoperiod manipulations are widely used throughout the Atlantic salmon (Salmo salar) farming industry as a means of producing a product of uniform quality all-year round. However, farmers still remain sceptical over their effectiveness to regulate growth and maturation during the on-growing stage. Furthermore, reports of a characteristic growth-dip following light exposure suggest that light may negatively affect the physiological performance of fish in the short-term. Thus, this thesis investigates the effects of light characteristics (spectral quality, intensity and photoperiod) on growth and maturation of salmonid fish and addresses some of the uncertainties surrounding photoperiod use currently reported within the industry. Rainbow trout (Oncorhynchus mykiss) are seemingly an ideal model species for examining photoperiod effects on growth. Consequently, the application of constant light exposure (LL) at two different intensities (28W and 16W) during two different thermal conditions (summer and winter) was examined on individually tagged fish. Feed intake and growth appeared to be related to the ambient water temperature and did not appear to be affected by intensity or photoperiod, although the onset of constant light did appear to initially affect growth rate. This may indicate that LL has a limiting effect on the growth of trout or that the prevailing water temperature at which light is applied may override the photoperiodic effect. Furthermore, the lack of enhanced growth in trout exposed to LL, unlike that demonstrated for other salmonids, suggest that there may be a species-specific response to environmental variables. Thus, questions regarding photoperiod effects should be limited to the species in question. The main source of variation in results observed under photoperiod manipulations stems from the salmon industry. Atlantic salmon post-smolts were reared in seawater tanks and either maintained under a natural photoperiod (NP) or exposed to a simulated natural photoperiod (SNP), constant light superimposed on the natural light (NPLL) or constant light only (LL). Artificial light onset, irrespective of photoperiod, resulted in an apparent trend for a reduced appetite lasting up to 60 days. Furthermore, the onset of constant light resulted in a significant chronic elevation of plasma cortisol levels and changes to growth and thyroid hormone levels, providing direct evidence that constant light exposure induces stress. In addition, fish exposed to SNP failed to exhibit a stress response despite a low feed intake. However, differences in the plasma melatonin levels during twilight times, as compared to NP, suggest that gradual changes in the natural light intensity throughout the day, particularly around dawn and dusk, may be important for synchronizing daily events. No differences in growth were observed between the NP and NPLL regimes, although fish reared in an enclosed regime (SNP and LL) exhibited a significantly lower weight gain than fish in an open environment (NP and NPLL). This further highlights the impact that the rearing environment has on the growth performances of fish and the need for commercially run trials. Advances in lighting technologies and a greater understanding of how light is transformed through the water column have focussed research on the spectral sensitivity of fish. Therefore the lighting efficiency of novel blue narrow bandwidth LED lighting units through the water column and their effects on growth and maturation performances of salmon reared in commercial production cages were compared against the standard metal halide units currently utilized throughout the industry. LL application, irrespective of intensity or spectrum, reduced the numbers of fish maturing as compared to fish reared under a natural photoperiod. However, this was greatest under the standard metal halide units reflecting a greater light penetration and perception as determined by plasma melatonin levels. The metal halide groups exhibited the greatest relative weight gain over the trial period as compared to control fish. No evidence was observed for a growth-dip under metal halide light, although blue lit treatments exhibited an initial significant reduction in food consumption, suggesting a possible welfare issue. Nevertheless, the prototype blue LED units showed possible potential for commercial application by penetrating the water depth at half the distance of the metal halide units for only one eighth the power and one fifth the brightness. However, further tests of these prototype spectral units are required to examine the potential welfare and physiological growth and reproductive effects. These studies have shown that the efficacy of artificial light regimes is largely dependent upon the effectiveness of the light source through the underwater environment and its perception by fish, providing a sufficient intensity is emitted exceeding the physiological threshold level for the species cultured. Moreover, whilst the onset of artificial light may elicit a stress response and demonstrate a trend for a suppression of appetite for salmon reared in experimental tanks, no compelling evidence for a suppression of appetite or growth was found under normal commercial cage conditions. This suggests that the growth-dip observed within the industry may in part be a combination of a physiological response to the onset of light further exaggerated by the farmer’s perception and altered judgement in feeding. In addition, the results obtained from this study have helped to standardize the use of light regimes within the industry. Nevertheless, further studies are necessary to fully elucidate the underlying mechanisms which may govern growth and maturation in fish following the onset of light exposure.

Page generated in 0.1033 seconds