• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudos estruturais e de química medicinal aplicados às enzimas da via glicolítica de protozoários: enolase de Plasmodium falciparum e gliceraldeído-3-fosfato desidrogenase de Trypanosoma cruzi / Structural studies and medicinal chemistry on glycolysis pathway of protozoan enzymes: enolase from Plasmodium falciparum and glyceraldehyde-3-phosphate from Trypanosoma cruzi

Maluf, Fernando Vasconcelos 31 July 2015 (has links)
A melhor compreensão dos mecanismos fisiopatológicos e farmacológicos aliados a métodos modernos de investigação tornaram possível a descoberta e o desenvolvimento de fármacos para diversas doenças e disfunções orgânicas em humanos. Os fármacos desenvolvidos atualmente são resultados de intensos esforços em pesquisa por equipes multidisciplinares, impactando diretamente na qualidade de vida das diversas populações no mundo. Nesse cenário, os grupos de pesquisas estabelecidos em Universidades com foco no planejamento de fármacos para doenças tropicais têm crescido. A Malária e a Doença de Chagas figuram com especial importância, a primeira pela expressiva mortalidade mundial, enquanto a segunda pela morbidade e seus impactos na população brasileira. O tratamento de ambas possui limitações que se agravam, seja pelo baixo número de opções terapêuticas, ou pelo desenvolvimento de cepas resistentes. As enzimas investigadas nesse doutoramento, enolase (PfEnolase) de Plasmodium falciparum e gliceraldeído3fosfato desidrogenase de Trypanosoma cruzi (TcGAPDH), são componentes da via glicolítica destes parasitas e são considerados alvos moleculares atrativos para o desenvolvimento de inibidores enzimáticos, dada a importância destas enzimas no processo de obtenção de energia do parasita. Os estudos fundamentamse na busca por modulação seletiva da atividade biológica dos alvos selecionados através do desenvolvimento de novas moléculas bioativas. O estabelecimento de protocolo de expressão e purificação para enzima Pfenolase permitiu sua obtenção em quantidade e pureza suficiente para condução de estudos cinéticos e de triagem biológica, com a identificação de cinco novas classes químicas bastante promissoras; além de ensaios de cristalização, que culminaram na determinação da enzima em diversos complexos cristalográficos. Os dados estruturais produzidos foram fundamentais para condução da abordagem computacional de triagem virtual, que permitiu a identificação de 31 moléculas candidatas a inibidoras de Pfenolase. Avanços significativos foram obtidos também com a enzima TcGAPDH, destacando-se as adaptações nos processos de obtenção da proteína recombinante e ensaio cinético, condução de ensaio de bioprospecção orientada com a identificação e caracterização da molécula isolada (tilirosídeo). Novas condições de cristalização foram identificadas e poderão ser empregadas no processo de obtenção de complexos cristalográficos futuros. Adicionalmente, desenvolveu-se uma ferramenta computacional, Kinecteasy, para processamento automatizado dos dados produzidos das etapas de triagem biológica. Os trabalhos integrados de biologia estrutural e química medicinal desenvolvidos contribuem significativamente para o avanço no processo de planejamento de novos inibidores para as enzimas selecionadas. / A better understanding of the pathophysiological and pharmacological mechanisms together with the modern research methods made possible the discovery and development of drugs for several humans´ diseases. The drugs currently developed are the result of intense efforts in research of multidisciplinary teams having as a direct consequence a remarkable impact on life quality of populations all over the world. In this scenario, research groups established at universities, with their focus on drug development for tropical diseases, are increasing. Malaria and Chagas disease deserve special attention, the former by the expressive world mortality, while the second by the morbidity and its impact on Brazilian population. Treatment for both has limitations, whether by the low number of therapeutic options, or by development of resistance. The target enzymes for this PhD project, enolase (PfEnolase) of Plasmodium falciparum and glyceraldehyde 3-phosphate dehydrogenase from Trypanosoma cruzi (TcGAPDH), are essential components of glycolytic pathway and therefore related to the parasite energy production, thus, are considered attractive molecular targets for enzyme inhibitors development. Essentially, the proposed studies seek selective modulation of the target´s biological activity through the development of new bioactive molecules. The expression and purification protocols developed for Pfenolase have allowed us to obtain recombinant protein at suitable yield and purity for conducting screening assays, which has revealed five new chemical classes as Pfenolase inhibitors. Crystallization experiments were successfully conducted and 3D structure were determined for different complexes. Structural data was essential for performing the computational approach of virtual screening, which has allowed us to identify 31 inhibitor candidates for Pfenolase. Significant advances were obtained with TcGAPDH, highlighting the adaptations on recombinant protein protocol and kinetic assay. Assay-guided bioprospecting experiments were successfully performed with identification and characterization of isolated inhibitor (tiliroside). New crystallization conditions were identified and will be employed in future co-crystallization and soaking studies. Additionally, Kinecteasy, a computational tool, were developed for automated data processing of biological screening assays. The structure and medicinal chemistry studies presented here contribute significantly in the process of drug development for the selected enzymes.
2

Estudos estruturais e de química medicinal aplicados às enzimas da via glicolítica de protozoários: enolase de Plasmodium falciparum e gliceraldeído-3-fosfato desidrogenase de Trypanosoma cruzi / Structural studies and medicinal chemistry on glycolysis pathway of protozoan enzymes: enolase from Plasmodium falciparum and glyceraldehyde-3-phosphate from Trypanosoma cruzi

Fernando Vasconcelos Maluf 31 July 2015 (has links)
A melhor compreensão dos mecanismos fisiopatológicos e farmacológicos aliados a métodos modernos de investigação tornaram possível a descoberta e o desenvolvimento de fármacos para diversas doenças e disfunções orgânicas em humanos. Os fármacos desenvolvidos atualmente são resultados de intensos esforços em pesquisa por equipes multidisciplinares, impactando diretamente na qualidade de vida das diversas populações no mundo. Nesse cenário, os grupos de pesquisas estabelecidos em Universidades com foco no planejamento de fármacos para doenças tropicais têm crescido. A Malária e a Doença de Chagas figuram com especial importância, a primeira pela expressiva mortalidade mundial, enquanto a segunda pela morbidade e seus impactos na população brasileira. O tratamento de ambas possui limitações que se agravam, seja pelo baixo número de opções terapêuticas, ou pelo desenvolvimento de cepas resistentes. As enzimas investigadas nesse doutoramento, enolase (PfEnolase) de Plasmodium falciparum e gliceraldeído3fosfato desidrogenase de Trypanosoma cruzi (TcGAPDH), são componentes da via glicolítica destes parasitas e são considerados alvos moleculares atrativos para o desenvolvimento de inibidores enzimáticos, dada a importância destas enzimas no processo de obtenção de energia do parasita. Os estudos fundamentamse na busca por modulação seletiva da atividade biológica dos alvos selecionados através do desenvolvimento de novas moléculas bioativas. O estabelecimento de protocolo de expressão e purificação para enzima Pfenolase permitiu sua obtenção em quantidade e pureza suficiente para condução de estudos cinéticos e de triagem biológica, com a identificação de cinco novas classes químicas bastante promissoras; além de ensaios de cristalização, que culminaram na determinação da enzima em diversos complexos cristalográficos. Os dados estruturais produzidos foram fundamentais para condução da abordagem computacional de triagem virtual, que permitiu a identificação de 31 moléculas candidatas a inibidoras de Pfenolase. Avanços significativos foram obtidos também com a enzima TcGAPDH, destacando-se as adaptações nos processos de obtenção da proteína recombinante e ensaio cinético, condução de ensaio de bioprospecção orientada com a identificação e caracterização da molécula isolada (tilirosídeo). Novas condições de cristalização foram identificadas e poderão ser empregadas no processo de obtenção de complexos cristalográficos futuros. Adicionalmente, desenvolveu-se uma ferramenta computacional, Kinecteasy, para processamento automatizado dos dados produzidos das etapas de triagem biológica. Os trabalhos integrados de biologia estrutural e química medicinal desenvolvidos contribuem significativamente para o avanço no processo de planejamento de novos inibidores para as enzimas selecionadas. / A better understanding of the pathophysiological and pharmacological mechanisms together with the modern research methods made possible the discovery and development of drugs for several humans´ diseases. The drugs currently developed are the result of intense efforts in research of multidisciplinary teams having as a direct consequence a remarkable impact on life quality of populations all over the world. In this scenario, research groups established at universities, with their focus on drug development for tropical diseases, are increasing. Malaria and Chagas disease deserve special attention, the former by the expressive world mortality, while the second by the morbidity and its impact on Brazilian population. Treatment for both has limitations, whether by the low number of therapeutic options, or by development of resistance. The target enzymes for this PhD project, enolase (PfEnolase) of Plasmodium falciparum and glyceraldehyde 3-phosphate dehydrogenase from Trypanosoma cruzi (TcGAPDH), are essential components of glycolytic pathway and therefore related to the parasite energy production, thus, are considered attractive molecular targets for enzyme inhibitors development. Essentially, the proposed studies seek selective modulation of the target´s biological activity through the development of new bioactive molecules. The expression and purification protocols developed for Pfenolase have allowed us to obtain recombinant protein at suitable yield and purity for conducting screening assays, which has revealed five new chemical classes as Pfenolase inhibitors. Crystallization experiments were successfully conducted and 3D structure were determined for different complexes. Structural data was essential for performing the computational approach of virtual screening, which has allowed us to identify 31 inhibitor candidates for Pfenolase. Significant advances were obtained with TcGAPDH, highlighting the adaptations on recombinant protein protocol and kinetic assay. Assay-guided bioprospecting experiments were successfully performed with identification and characterization of isolated inhibitor (tiliroside). New crystallization conditions were identified and will be employed in future co-crystallization and soaking studies. Additionally, Kinecteasy, a computational tool, were developed for automated data processing of biological screening assays. The structure and medicinal chemistry studies presented here contribute significantly in the process of drug development for the selected enzymes.
3

Planejamento de inibidores da enzima diidroorotato desidrogenase de Trypanosoma cruzi por biocalorimetria / Biocalorimetry as a tool for Trypanosoma cruzi dihydroorotate dehydrogenase inhibitors discovery

Cheleski, Juliana 04 March 2011 (has links)
A doença de Chagas, causada pelo protozoário flagelado Trypanosoma cruzi, é uma doença tropical que enseja morte/morbidade de milhões de pessoas na América Latina. Por processos migratórios, vem-se estendendo ao sul dos Estados Unidos, Canadá, Europa, Austrália e Japão. Essa doença tem sido considerada super-negligenciada pela indústria farmacêutica, já que os dois fármacos disponíveis para o seu tratamento foram introduzidos há mais de quarenta anos e apresentam baixa eficácia com vários efeitos colaterais severos. Mais recentemente, a Organização Mundial da Saúde considerou a doença de Chagas, dentre outras, como a doença da pobreza! Com esse cenário completamente desfavorável aos portadores da doença, é necessária a descoberta, desenvolvimento e introdução de novos fármacos para o tratamento eficiente e seguro da doença de Chagas. <br />Dentro desse contexto, este trabalho representa uma importante contribuição para o entendimento das razões moleculares da ação farmacológica de substâncias químicas bioativas de interesse à farmacoterapia da doença de Chagas. Ao nível molecular, a enzima pertencente à via de síntese de novo de nucleotídeos de pirimidinas, diidroorotato desidrogenase do Trypanosoma cruzi (TcDHODH), é um alvo promissor para a descoberta e desenvolvimento de candidatos a fármacos de interesse para o tratamento da doença de Chagas. <br />Os conceitos e ferramentas da química medicinal computacional, tais como os ensaios virtuais in silico, foram usados para a identificação de inibidores da TcDHODH. Vinte e seis substâncias inéditas como inibidores da TcDHODH foram adquiridos comercialmente e avaliados experimentalmente através da Calorimetria de Titulação Isotérmica (ITC) para a determinação do mecanismo de inibição e da constante cinética de afinidade (Kiapp). <br />Na etapa de docagem molecular, o objetivo era identificar moléculas que apresentassem uma boa afinidade pelo sítio ativo da enzima TcDHODH. A primeira série de ligantes selecionados dos métodos in silico, apresentou inibição enzimática na concentração de micromolar com eficiência média de ligante de 0,50 kcal mol-1 átomo-1. Devido à baixa massa molecular (aproximadamente 200 kDa) e a alta eficiência de ligante, essa série foi considerada como constituída de excelentes substâncias com elevado poder de reconhecimento biomolecular. Por isso, foram caracterizadas como substâncias passíveis de otimização no processo do-ligante-para-substância matriz. <br />As enzimas TcDHODH e DHODH de Leishmania major (LmDHODH) têm sítios ativos com elevado grau de similaridade. Portanto, usando a enzima LmDHODH como padrão de substituição da TcDHODH é possível fazer a descrição do modo de interação do co-complexo TcDHODH-inibidor. O modo de ação descrito através da resolução da estrutura cristalográfica de raios-X, além de validar ortogonalmente os resultados cinéticos obtidos por ITC - que identificou as substâncias como inibidores competitivos (por interação direta no sítio ativo da enzima TcDHODH), geraram hipóteses farmacofóricas para a busca de novas moléculas (chamadas de segunda geração), agora com padrão superior de reconhecimento molecular do sítio da TcDHODH. Para validar complementarmente a hipótese, foi demonstrado que os inibidores da TcDHODH inibem, similarmente, a LmDHODH. <br />Uma análise cuidadosa da estrutura tridimensional da enzima TcDHODH, demostrou a possibilidade de ocupação do sítio S2 que se estende além da região do sítio catalítico S1, permitindo assim o aumento da afinidade biomolecular com os inibidores. Além disso, o sítio S2 não é encontrado na estrutura da proteína de humanos (HsDHODH), podendo ser uma região passível de seletividade frente à enzima TcDHODH. <br />O emprego adequado dessa hipótese resultou na otimização dos ligantes identificados previamente para substâncias mais potentes que inibiram a enzima de forma competitiva em relação ao substrato diidroorotato (DHO) em valores Kiapp de 121 &plusmn; 14 nM e 190 &plusmn; 10 nM. <br />A técnica de ITC foi fundamental no processo de descoberta de inibidores enzimáticos, pois se mostrou extremamente susceptível à determinação da interação intermolecular enzima-inibidor, permitindo acompanhar a cinética da reação e obter os valores da constante de afinidade de maneira precisa e acurada. Com isso, a taxa de acerto obtida nesta tese foi de 46%, considerando-se apenas as substâncias com valores de Ki app < 100 &micro;M. Esse é um número favoravelmente apreciável, já que na literatura ele gira em torno de 1-10% quando o planejamento in silico é realizado, quando comparado às taxas de acerto dos métodos de ensaio em larga escala (HTS), entre 0-2 %, os resultados alcançados neste trabalho são ainda mais significativos. <br />Além disso, as substâncias químicas selecionadas através da integração de métodos in silico e biocalorimétricos apresentam elevado grau de complexidade no processo biomolecular de interação enzima-ligante, que permite classificá-las para as fases seguintes da gênese planejada de fármacos. / American trypanosomiasis or Chagas disease, caused by the haemoflagellate Trypanosoma cruzi, is a tropical disease that affects millions of people in Latin America. Epidemiology of Chagas disease in non-endemic countries is attained by immigration as the disease also affects people in the United States, Canada, Europe, Australia and Japan. However, the United States are not to be written off as an area of nonendemicity for Chagas disease like Europe or Asia because the southern states have enzootic T. cruzi transmission that involves triatomine species and hosts such as raccoons, opossums, and domestic dogs. Even though, this disease has been considered as a super-neglected from the big Pharma Industry viewpoint since the only available drugs for its treatment were introduced in the market more than forty years ago and worsen is that they have low efficacy and cause various severe side effects. <br />Although the current clinical scenario is of course discouraging and is far from being even a soothing treatment for those who suffer from the disease, it prompt ones to set efforts towards the need of discovering and developing new efficacious and safe drugs to treat Chagas disease. <br />Our research group covers the concept of enzymes acting as targets for the action of drugs. Once T. cruzi has many druggable targets, the dihydroorotate dehydrogenase enzyme (TcDHODH) that belongs to the de novo pyrimidine nucleotide synthetic pathway has been chosen for the search of new inhibitors that may be of use in the treatment of Chagas disease. To accomplish with this and considering that inhibitors are molecules that decrease enzyme activity leading to parasite death, we used the concepts and tools of modern computational medicinal chemistry such as in silico screening of small molecules that bind to the active site of the TcDHODH. <br />After a thoroughly program of virtually screening thousands of compounds, 26 were purchased from commercially available sources and experimentally assayed against the TcDHODH using Isothermal Titration Calorimetry (ITC) in order to determine the mechanism of inhibition and the kinetic affinity constant (Kiapp). <br />The first series of inhibitors selected from our in silico strategy were evaluated by ITC to yield compounds that inhibited the TcDHODH in the micromolar concentration range with an average of 0.50 kcal mol-1 atom-1 ligand efficiency (LE). Because the assayed compounds have low molecular weight (ca. 200 kDa) and high LE, which bring them to the specific bimolecular pattern recognition all of them were considered good inhibitors capable of being selected to enter the hit-to-lead optimization process. <br />The detailed description of the ligand-enzyme mode of binding (MOB) is thoroughly accomplished by solving the X ray crystal structure of the surrogate Leishmania major DHODH enzyme (LmDHODH), which has a high degree of similarity with the enzyme TcDHODH. The MOB credited to be in the active site of the TcDHODH orthogonally validated the ITC kinetic experimental data obtained for all ligands as competitive inhibitors that interact at the active site of the TcDHODH and helped to generate pharmacophoric hypotheses for the search of new second generation molecules acting against the enzyme TcDHODH.  Analyzing the 3D structure of the TcDHODH along with its surrogate LmDHODH, we envisaged the possibility of compounds to extend their side chain beyond the region of the catalytic site (called S1), and interacting in a region called S2, so to increase binding affinity. Moreover, the TcDHODH S2 site that is not found in the 3D protein structure of humans (HsDHODH) is likely to offer new insights for the search of inhibitors whose binding to this S2 site can pave the roads towards the needed structural basis for selective inhibition of TcDHODH. <br />The most potent compounds inhibited the enzyme competitively with respect to the substrate dihydroorotate (DHO) at Kiapp values of 121 &plusmn; 14 nM and 190 &plusmn; 10 nM, which constitutes high affinity TcDHODH inhibitors. The ITC technique was pivotal to this process of enzyme inhibitors discovery, because it proved to be extremely sensitive thus allowing to monitor the kinetics of the reaction and to obtain precise and accurate values of affinity constants. <br />The hit rate obtained in this work, considering only those compounds with Kiapp < 100 &micro;M, was 46%. This is a really high number, since literature values range from 1 to 10% when the planning new inhibitors via in silico methods when compared to the success rates obtained by the methods of testing on large scales (HTS), 0-2 %, the results achieved in this work are even more significant. Moreover, the compounds selected through the integration of in silico and calorimetric methods showed a high degree of complexity in the process of bimolecular enzyme-ligand recognition, which allows to pass them to the next phase of the drug design process.
4

Planejamento de inibidores da enzima diidroorotato desidrogenase de Trypanosoma cruzi por biocalorimetria / Biocalorimetry as a tool for Trypanosoma cruzi dihydroorotate dehydrogenase inhibitors discovery

Juliana Cheleski 04 March 2011 (has links)
A doença de Chagas, causada pelo protozoário flagelado Trypanosoma cruzi, é uma doença tropical que enseja morte/morbidade de milhões de pessoas na América Latina. Por processos migratórios, vem-se estendendo ao sul dos Estados Unidos, Canadá, Europa, Austrália e Japão. Essa doença tem sido considerada super-negligenciada pela indústria farmacêutica, já que os dois fármacos disponíveis para o seu tratamento foram introduzidos há mais de quarenta anos e apresentam baixa eficácia com vários efeitos colaterais severos. Mais recentemente, a Organização Mundial da Saúde considerou a doença de Chagas, dentre outras, como a doença da pobreza! Com esse cenário completamente desfavorável aos portadores da doença, é necessária a descoberta, desenvolvimento e introdução de novos fármacos para o tratamento eficiente e seguro da doença de Chagas. <br />Dentro desse contexto, este trabalho representa uma importante contribuição para o entendimento das razões moleculares da ação farmacológica de substâncias químicas bioativas de interesse à farmacoterapia da doença de Chagas. Ao nível molecular, a enzima pertencente à via de síntese de novo de nucleotídeos de pirimidinas, diidroorotato desidrogenase do Trypanosoma cruzi (TcDHODH), é um alvo promissor para a descoberta e desenvolvimento de candidatos a fármacos de interesse para o tratamento da doença de Chagas. <br />Os conceitos e ferramentas da química medicinal computacional, tais como os ensaios virtuais in silico, foram usados para a identificação de inibidores da TcDHODH. Vinte e seis substâncias inéditas como inibidores da TcDHODH foram adquiridos comercialmente e avaliados experimentalmente através da Calorimetria de Titulação Isotérmica (ITC) para a determinação do mecanismo de inibição e da constante cinética de afinidade (Kiapp). <br />Na etapa de docagem molecular, o objetivo era identificar moléculas que apresentassem uma boa afinidade pelo sítio ativo da enzima TcDHODH. A primeira série de ligantes selecionados dos métodos in silico, apresentou inibição enzimática na concentração de micromolar com eficiência média de ligante de 0,50 kcal mol-1 átomo-1. Devido à baixa massa molecular (aproximadamente 200 kDa) e a alta eficiência de ligante, essa série foi considerada como constituída de excelentes substâncias com elevado poder de reconhecimento biomolecular. Por isso, foram caracterizadas como substâncias passíveis de otimização no processo do-ligante-para-substância matriz. <br />As enzimas TcDHODH e DHODH de Leishmania major (LmDHODH) têm sítios ativos com elevado grau de similaridade. Portanto, usando a enzima LmDHODH como padrão de substituição da TcDHODH é possível fazer a descrição do modo de interação do co-complexo TcDHODH-inibidor. O modo de ação descrito através da resolução da estrutura cristalográfica de raios-X, além de validar ortogonalmente os resultados cinéticos obtidos por ITC - que identificou as substâncias como inibidores competitivos (por interação direta no sítio ativo da enzima TcDHODH), geraram hipóteses farmacofóricas para a busca de novas moléculas (chamadas de segunda geração), agora com padrão superior de reconhecimento molecular do sítio da TcDHODH. Para validar complementarmente a hipótese, foi demonstrado que os inibidores da TcDHODH inibem, similarmente, a LmDHODH. <br />Uma análise cuidadosa da estrutura tridimensional da enzima TcDHODH, demostrou a possibilidade de ocupação do sítio S2 que se estende além da região do sítio catalítico S1, permitindo assim o aumento da afinidade biomolecular com os inibidores. Além disso, o sítio S2 não é encontrado na estrutura da proteína de humanos (HsDHODH), podendo ser uma região passível de seletividade frente à enzima TcDHODH. <br />O emprego adequado dessa hipótese resultou na otimização dos ligantes identificados previamente para substâncias mais potentes que inibiram a enzima de forma competitiva em relação ao substrato diidroorotato (DHO) em valores Kiapp de 121 &plusmn; 14 nM e 190 &plusmn; 10 nM. <br />A técnica de ITC foi fundamental no processo de descoberta de inibidores enzimáticos, pois se mostrou extremamente susceptível à determinação da interação intermolecular enzima-inibidor, permitindo acompanhar a cinética da reação e obter os valores da constante de afinidade de maneira precisa e acurada. Com isso, a taxa de acerto obtida nesta tese foi de 46%, considerando-se apenas as substâncias com valores de Ki app < 100 &micro;M. Esse é um número favoravelmente apreciável, já que na literatura ele gira em torno de 1-10% quando o planejamento in silico é realizado, quando comparado às taxas de acerto dos métodos de ensaio em larga escala (HTS), entre 0-2 %, os resultados alcançados neste trabalho são ainda mais significativos. <br />Além disso, as substâncias químicas selecionadas através da integração de métodos in silico e biocalorimétricos apresentam elevado grau de complexidade no processo biomolecular de interação enzima-ligante, que permite classificá-las para as fases seguintes da gênese planejada de fármacos. / American trypanosomiasis or Chagas disease, caused by the haemoflagellate Trypanosoma cruzi, is a tropical disease that affects millions of people in Latin America. Epidemiology of Chagas disease in non-endemic countries is attained by immigration as the disease also affects people in the United States, Canada, Europe, Australia and Japan. However, the United States are not to be written off as an area of nonendemicity for Chagas disease like Europe or Asia because the southern states have enzootic T. cruzi transmission that involves triatomine species and hosts such as raccoons, opossums, and domestic dogs. Even though, this disease has been considered as a super-neglected from the big Pharma Industry viewpoint since the only available drugs for its treatment were introduced in the market more than forty years ago and worsen is that they have low efficacy and cause various severe side effects. <br />Although the current clinical scenario is of course discouraging and is far from being even a soothing treatment for those who suffer from the disease, it prompt ones to set efforts towards the need of discovering and developing new efficacious and safe drugs to treat Chagas disease. <br />Our research group covers the concept of enzymes acting as targets for the action of drugs. Once T. cruzi has many druggable targets, the dihydroorotate dehydrogenase enzyme (TcDHODH) that belongs to the de novo pyrimidine nucleotide synthetic pathway has been chosen for the search of new inhibitors that may be of use in the treatment of Chagas disease. To accomplish with this and considering that inhibitors are molecules that decrease enzyme activity leading to parasite death, we used the concepts and tools of modern computational medicinal chemistry such as in silico screening of small molecules that bind to the active site of the TcDHODH. <br />After a thoroughly program of virtually screening thousands of compounds, 26 were purchased from commercially available sources and experimentally assayed against the TcDHODH using Isothermal Titration Calorimetry (ITC) in order to determine the mechanism of inhibition and the kinetic affinity constant (Kiapp). <br />The first series of inhibitors selected from our in silico strategy were evaluated by ITC to yield compounds that inhibited the TcDHODH in the micromolar concentration range with an average of 0.50 kcal mol-1 atom-1 ligand efficiency (LE). Because the assayed compounds have low molecular weight (ca. 200 kDa) and high LE, which bring them to the specific bimolecular pattern recognition all of them were considered good inhibitors capable of being selected to enter the hit-to-lead optimization process. <br />The detailed description of the ligand-enzyme mode of binding (MOB) is thoroughly accomplished by solving the X ray crystal structure of the surrogate Leishmania major DHODH enzyme (LmDHODH), which has a high degree of similarity with the enzyme TcDHODH. The MOB credited to be in the active site of the TcDHODH orthogonally validated the ITC kinetic experimental data obtained for all ligands as competitive inhibitors that interact at the active site of the TcDHODH and helped to generate pharmacophoric hypotheses for the search of new second generation molecules acting against the enzyme TcDHODH.  Analyzing the 3D structure of the TcDHODH along with its surrogate LmDHODH, we envisaged the possibility of compounds to extend their side chain beyond the region of the catalytic site (called S1), and interacting in a region called S2, so to increase binding affinity. Moreover, the TcDHODH S2 site that is not found in the 3D protein structure of humans (HsDHODH) is likely to offer new insights for the search of inhibitors whose binding to this S2 site can pave the roads towards the needed structural basis for selective inhibition of TcDHODH. <br />The most potent compounds inhibited the enzyme competitively with respect to the substrate dihydroorotate (DHO) at Kiapp values of 121 &plusmn; 14 nM and 190 &plusmn; 10 nM, which constitutes high affinity TcDHODH inhibitors. The ITC technique was pivotal to this process of enzyme inhibitors discovery, because it proved to be extremely sensitive thus allowing to monitor the kinetics of the reaction and to obtain precise and accurate values of affinity constants. <br />The hit rate obtained in this work, considering only those compounds with Kiapp < 100 &micro;M, was 46%. This is a really high number, since literature values range from 1 to 10% when the planning new inhibitors via in silico methods when compared to the success rates obtained by the methods of testing on large scales (HTS), 0-2 %, the results achieved in this work are even more significant. Moreover, the compounds selected through the integration of in silico and calorimetric methods showed a high degree of complexity in the process of bimolecular enzyme-ligand recognition, which allows to pass them to the next phase of the drug design process.

Page generated in 0.0601 seconds