• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Injection électrique pour un laser en germanium contraint / Electrical injection for a strained germanium laser

Prost, Mathias 06 March 2015 (has links)
L’utilisation du germanium dopé de type n et contraint en tension ouvre la possibilité d’obtenir une source laser monolithique pour la photonique sur silicium. Mes travaux étudient l’injection électrique dans le germanium pour sonder la réalisation d’un laser contraint. J’ai dimensionné les performances des futurs dispositifs en fonction de la contrainte et du dopage. Pour cela, j’ai simulé le transport des porteurs au travers de doubles hétérostructures afin d’obtenir l’inversion de population dans la couche de germanium a été mis en évidence. Un régime de fonctionnement qui permet de réduire de deux ordres de grandeur le courant de seuil d’inversion de population. En appliquant une déformation de 0.9%, avec un dopage de 4×〖10〗^19 cm-3, on peut obtenir des densités de courant de seuil inférieures à 10 kA/cm2. La formation d’hétérostructure avec le germanium est critique. Afin d’étudier expérimentalement l’électroluminescence du germanium, j’ai dû établir des méthodes alternatives d’injection des porteurs à la double hétérostructure GaAs-p/Ge-n/GaAs-n. On utilise des contacts redresseurs (Schottky) sur des couches de germanium dopées de type n. Cette méthode a été optimisée par la passivation de la surface du germanium avec une couche d’oxyde, qui permet l’amélioration des propriétés électriques et d’émission radiative. On a aussi développé une approche permettant de former des couches de SiGe sur germanium par épitaxie induite par recuit laser pour obtenir une double hétérostructure. J’ai réalisé plusieurs types de cavités en germanium qui permettent de combiner le transfert de la contrainte avec l’injection électrique. J’ai établi le procédé de fabrication pour des structures en guide d’onde et en micropilier en utilisant un transfert de déformation par des couches de SiN contraintes. Un niveau de déformation biaxial de 0.72% pour des cavités en micropilier sous injection électrique a été atteint. L’évaluation de la déformation à partir des spectres d’électroluminescence a été confrontée à des simulations de déformation mécanique par éléments finis, tout en considérant l’injection électrique des porteurs dans la structure / Tensile strained and n-doped germanium can be used as an active material for the realization of an optical source for silicon photonics. I have investigated electroluminescence of device as a function of tensile strain and n-doping. For that, I have performed modeling of the carrier transport through double heterostructures to obtain population inversion in the germanium layer. An operating point that reduces by two orders of magnitude the population inversion current threshold has been evidenced. For a germanium layer doped at 4×〖10〗^19 cm-3 with a 0.9% biaxial strain, the current density threshold could be reduced below the 10 kA/cm2 range. The germanium interface properties are critical. To experimentally investigate electroluminescence in germanium, I had to establish different methods of carrier injection to offer an alternative to the double heterostructure p-GaAs/n-Ge/n-GaAs. We first propose to use a Schottky heterostructure to inject carriers in n-doped germanium. We show that carrier injection and electroluminescence devices can be optimized by depositing a thin interfacial oxide layer on top of n-doped germanium. We have also developed an approach to form SiGe layers on germanium by epitaxial laser induced annealing in order to obtain a double heterostructure. I have developed several clean room processes to fabricate germanium cavities which can combine electrical injection and strain transfer, including waveguides and micropilars structures. We show that a biaxial tensile strain up to 0.72% can be transferred in micropilar cavities under electrical pumping. The evaluation of strain level was confronted to finite element simulations of mechanical deformation, taking into account the electrical carrier injection
2

VCSELs: technologies et intégration photonique

Bardinal, Véronique 09 April 2009 (has links) (PDF)
Depuis le premier concept proposé par K.Iga il y a 30 ans jusqu'aux recherches actuelles sur l'intégration photonique des VCSELs (pour Lasers à Cavité Verticale à Emission par la Surface), une forte activité de recherches a été déployée sur ces composants optoélectroniques emblématiques, du matériau au composant jusqu'au système, leur permettant d'acquérir leur position stratégique actuelle. C'est dans cette dynamique que s'est inscrit mon parcours scientifique. Les principales activités de recherche que j'ai menées depuis 1992 sur la technologie des VCSELs et leur intégration dans des systèmes photoniques sont décrites dans ce mémoire. Je rappelle tout d'abord brièvement les avantages des dispositifs III-V à cavité verticale pour l'optoélectronique et plus particulièrement les propriétés des VCSELs, composants au centre de mes travaux. Ce contexte général étant posé, je décris les contraintes imposées lors de l'élaboration de ces dispositifs à cavité verticale sur GaAs ainsi que la technique de contrôle optique en temps réel qui m'a permis de répondre à ce défi. Je détaille ensuite mes travaux sur la photo-détection en cavité verticale, qui ont porté sur la conception, la réalisation et la caractérisation de photo-détecteurs simples à cavité massive, de VCSELs à double fonction pour la détection d'un faisceau externe, ainsi que de VCSELs avec monitoring intégré exploitant la détection latérale de l'émission spontanée dans le plan de la cavité. La thématique du contrôle de l'injection électrique dans les VCSELs de grandes dimensions pour la manipulation de solitons de cavité ou la génération de puissance est également exposée, ainsi que les études menées sur l'intégration des VCSELs dans les microsystèmes qui m'ont conduite à mettre en place une nouvelle filière sur la micro-optique intégrée à base de polymères pour ces composants. Enfin, les prospectives de recherche qu'ouvrent l'ensemble de ces travaux sont présentées ainsi que le contexte dans lequel elles s'inscrivent.
3

Transport polarisé en spin dans des nanostructures semiconductrices

Mattana, Richard 29 October 2003 (has links) (PDF)
Cette thèse s'inscrit dans la thématique de l'électronique de spin à base de semiconducteurs. L'intégration de matériaux magnétiques dans des structures semiconductrices représentent actuellement un axe de recherche en plein essor qui amènera probablement une nouvelle génération de composants électroniques où seront associés deux degrés de liberté : la charge et le spin des porteurs. La finalité de ce travail est la détection électrique d'une injection de spins dans un puits de GaAs. Pour cela nous avons préalablement étudié des couches minces du semiconducteur ferromagnétique GaAs substitué Mn et des jonctions tunnel magnétiques GaMnAs/AlAs/GaMnAs. L'étude des couches minces de GaMnAs a permis de mettre en évidence la corrélation entre les propriétés magnétiques et électroniques et les jonctions tunnel ont permis de quantifier la polarisation en spin des porteurs du GaMnAs. Nous avons ensuite élaboré des structures où deux électrodes de GaMnAs sont séparées par un puits quantique AlAs/GaAs/AlAs. La première électrode permet de polariser les porteurs et la seconde d'analyser le courant polarisé en spin injecté dans le puits. La magnétorésistance (MR) dans ces structures est attribuée à un transport tunnel séquentiel avec accumulation de spins dans le puits de GaAs. La forte MR obtenue (40%) est la signature de la conservation du spin dans le puits et traduit ainsi que le temps de vie du spin des trous est supérieur au temps de séjour des trous dans ce puits. Les études de la MR en fonction de ces deux temps caractéristiques ont permis d'établir les conditions nécessaires afin de détecter une injection de spins dans un puits quantique semiconducteur. Ces expériences entièrement électriques nous ont aussi permis d'estimer le temps de vie du spin des trous dans ces puits de GaAs à la centaine de picosecondes à 4.2K.

Page generated in 0.109 seconds