Spelling suggestions: "subject:"nnk tet printing"" "subject:"nnk tet aprinting""
41 |
Rub, fold, and abrasion resistance testing of digitally printed documents /DiSantis, Nicholas E. January 2007 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2007. / Typescript. Includes bibliographical references (leaves 61-65).
|
42 |
INVESTIGATION OF THE EFFECT OF SWELLING AND SHRINKAGE ON THE WRINKLING RESPONSE OF LOCALLY WETTED PAPERS SUBJECTED TO TENSION WITH APPLICATION TO WEB-FED INK-JET PRINTINGMaharajan, Ranjit Kumar 24 July 2007 (has links)
No description available.
|
43 |
Development and Characterization of Low Cost Tungsten Disulfide Ink for Ink-jet PrintingMayersky, Joshua 21 September 2018 (has links)
No description available.
|
44 |
Sensor Array Devices Utilizing Nano-structured Metal-oxides for Hazardous Gas DetectionAndio, Mark Anthony 16 August 2012 (has links)
No description available.
|
45 |
Light Stabilisation of Photochromic PrintsBrixland, Nikolina January 2016 (has links)
Light stabilisation of photochromic dyes is seen as the most challenging part in the development of photochromic dyes. The aim of this research is to compare stabilisation methods and their effect on the lifetime of a photochromic print on textile. The vision is to create a textile UV-sensor that detects current UV light exposure in the surroundings and alarms the wearer by showing colour. The developed inks have been formulated for ink-jet printing as a novel production method with resource saving properties. UV-LED light curable ink formulations were prepared for two dye classes; a non-commercial spirooxazine, a commercial spirooxazine (Oxford Blue) and a commercial naphthopyran (Ruby Red). Two different stabilisation methods were applied; chemically by incorporation of hindered amine light stabilisers and physically by polyurethane coating. Fatigue tests were performed to evaluate and compare the stabilisation methods. The tests included were household washing, multiple activations and intensive sun-lamp exposure. As a result it was found that Oxford Blue and spirooxazine had an initial better resistance to photodegradation than Ruby Red. The coating reduced the ability of colour development in higher extend for Oxford Blue and spirooxazine compared to Ruby Red. Moreover, the photocolouration increased with the number of activations for Oxford Blue and spirooxazine in particular. In general, the physically stabilised samples showed a better or similar fatigue resistance compared to chemically stabilised samples. On the other hand the results are weak in significance. It is concluded that the developed coating method in combination with further optimising has potential.
|
46 |
Digital textile patterns inspired by themes from the late 1950s/early 1960sPickett, Meagan Lynette January 1900 (has links)
Master of Science / Department of Apparel, Textiles, and Interior Design / Sherry J. Haar / Inspired by people and objects of the late 1950s/early 1960s, textile patterns were created to use as a tool in the education of children through play. Four themes were developed, with three main prints in each theme. These twelve prints had a coordinating print and solid colors designed, and were utilized in the development of paper doll clothing. Representing the look of Jacqueline Kennedy, the paper dolls feature a pearl necklace, sunglasses, and a brunette hairstyle. Fabric was also printed on using a home-based ink jet printer, and used to construct a garment for an 18-inch, three dimensional doll. The final outcomes were exhibited in a display window, with an interactive element for adults and children at the opening reception.
|
47 |
PROCESSING OF NANOCOMPOSITES AND THEIR THERMAL AND RHEOLOGICAL CHARACTERIZATIONJacob M Faulkner (7023458) 13 August 2019 (has links)
<p>Polymer nanocomposites are a constantly evolving material
category due to the ability to engineer the mechanical, thermal, and optical
properties to enhance the efficiency of a variety of systems. While a vast
amount of research has focused on the physical phenomena of nanoparticles and
their contribution to the improvement of such properties, the ability to
implement these materials into existing commercial or newly emerging processing
methods has been studied much less extensively. The primary characteristic that
determines which processing technique is the most viable is the rheology or
viscosity of the material. In this work, we investigate the processing methods
and properties of nanocomposites for thermal interface and radiative cooling
applications. The first polymer nanocomposite examined here is a two-component
PDMS with graphene filler for 3D printing via a direct ink writing approach.
The composite acts as a thermal interface material which can enhance cooling
between a microprocessor and a heat sink by increasing the thermal conductivity
of the gap. Direct ink writing requires
a shear thinning ink with specific viscoelastic properties that allow for the
material to yield through a nozzle as well as retain its shape without a mold
following deposition. No predictive models of viscosity for nanocomposites
exist; therefore, several prominent models from literature are fit with
experimental data to describe the change in viscosity with the addition of
filler for several different PDMS ratios. The result is an understanding of the
relationship between the PDMS component ratio and graphene filler concentration
with respect to viscosity, with the goal of remaining within the acceptable
limits for printing via direct ink writing. The second nanocomposite system
whose processability is determined is paint consisting of acrylic filled with
reflective nanoparticles for radiative cooling paint applications. The paint is
tested with both inkjet and screen-printing procedures with the goal of
producing a thermally invisible ink. Radiative
cooling paint is successfully printed for the first time with solvent
modification. This work evaluates the processability of polymer nanocomposites
through rheological tailoring. </p><br>
|
48 |
Properties of Multifunctional Oxide Thin Films Despostied by Ink-jet PrintingFang, Mei January 2012 (has links)
Ink-jet printing offers an ideal answer to the emerging trends and demands of depositing at ambient temperatures picoliter droplets of oxide solutions into functional thin films and device components with a high degree of pixel precision. It is a direct single-step mask-free patterning technique that enables multi-layer and 3D patterning. This method is fast, simple, easily scalable, precise, inexpensive and cost effective compared to any of other methods available for the realization of the promise of flexible, and/or stretchable electronics of the future on virtually any type of substrate. Because low temperatures are used and no aggressive chemicals are required for ink preparation, ink-jet technique is compatible with a very broad range of functional materials like polymers, proteins and even live cells, which can be used to fabricate inorganic/organic/bio hybrids, bio-sensors and lab-on-chip architectures. After a discussion of the essentials of ink-jet technology, this thesis focuses particularly on the art of designing long term stable inks for fabricating thin films and devices especially oxide functional components for electronics, solar energy conversion, opto-electronics and spintronics. We have investigated three classes of inks: nanoparticle suspension based, surface modified nanoparticles based, and direct precursor solution based. Examples of the films produced using these inks and their functional properties are: 1) In order to obtain magnetite nanoparticles with high magnetic moment and narrow size distribution in suspensions for medical diagnostics, we have developed a rapid mixing technique and produced nanoparticles with moments close to theoretical values (APL 2011 and Nanotechnology 2012). The suspensions produced have been tailored to be stable over a long period of time. 2)In order to design photonic band gaps, suspensions of spherical SiO2 particles were produced by chemical hydrolysis (JAP 2010 and JNP 2011 - not discussed in the thesis). 3) Using suspension inks, (ZnO)1-x(TiO2)x composite films have been printed and used to fabricate dye sensitized solar cells (JMR 2012). The thickness and the composition of the films can be easily tailored in the inkjet printing process. Consequently, the solar cell performance is optimized. We find that adding Ag nanoparticles improves the ‘metal-bridge’ between the TiO2 grains while maintaining the desired porous structure in the films. The photoluminescence spectra show that adding Ag reduces the emission intensity by a factor of two. This indicates that Ag atoms act as traps to capture electrons and inhibit recombination of electron-hole pairs, which is desirable for photo-voltaic applications. 4) To obtain and study room temperature contamination free ferromagnetic spintronic materials, defect induced and Fe doped MgO and ZnO were synthesized ‘in-situ’ by precursor solution technique (preprints). It is found that the origin of magnetism in these materials (APL 2012 and MRS 2012) is intrinsic and probably due to charge transfer hole doping. 5) ITO thin films were fabricated via inkjet printing directly from liquid precursors. The films are highly transparent (transparency >90% both in the visible and IR range, which is rather unique as compared to any other film growth technique) and conductive (resistivity can be ~0.03 Ω•cm). The films have nano-porous structure, which is an added bonus from ink jetting that makes such films applicable for a broad range of applications. One example is in implantable biomedical components and lab-on-chip architectures where high transparency of the well conductive ITO electrodes makes them easily compatible with the use of quantum dots and fluorescent dyes. In summary, the inkjet patterning technique is incredibly versatile and applicable for a multitude of metal and oxide deposition and patterning. Especially in the case of using acetate solutions as inks (a method demonstrated for the first time by our group), the oxide films can be prepared ‘in-situ’ by direct patterning on the substrate without any prior synthesis stages, and the fabricated films are stoichiometric, uniform and smooth. This technique will most certainly continue to be a versatile tool in industrial manufacturing processes for material deposition in the future, as well as a unique fabrication tool for tailorable functional components and devices. / <p>QC 20120907</p>
|
49 |
A Micromachined Ultrasonic Droplet Generator: Design, Fabrication, Visualization, and ModelingMeacham, John Marcus 07 July 2006 (has links)
The focus of this Ph.D. thesis research is a new piezoelectrically driven micromachined ultrasonic atomizer concept that utilizes fluid cavity resonances in the 15 MHz range along with acoustic wave focusing to generate the pressure gradient required for droplet or jet ejection. This ejection technique exhibits low-power operation while addressing the key challenges associated with other atomization technologies including production of sub-5 um diameter droplets, low-temperature operation, the capacity to scale throughput up or down, and simple, low-cost fabrication. This thesis research includes device development and fabrication as well as experimental characterization and theoretical modeling of the acoustics and fluid mechanics underlying device operation. The main goal is to gain an understanding of the fundamental physics of these processes in order to achieve optimal design and controlled operation of the atomizer.
Simulations of the acoustic response of the system for various device geometries and different ejection fluid properties predict the resonant frequencies of the device and confirm that pressure field focusing occurs. High-spatial-resolution stroboscopic visualization of fluid ejection under various operating conditions is used to investigate whether the proposed atomizer is capable of operating in either the discrete-droplet or continuous-jet mode. The results of the visualization experiments combined with a scaling analysis provide a basic understanding of the physics governing the ejection process and allow for the establishment of simple scaling laws that prescribe the mode (e.g., discrete-droplet vs. continuous-jet) of ejection. In parallel, a detailed computational fluid dynamics (CFD) analysis of the fluid interface evolution and droplet formation and transport during the ejection process provides in-depth insight into the physics of the ejection process and determines the limits of validity of the scaling laws.
These characterization efforts performed in concert with device development lead to the optimal device design. The unique advantages enabled by the developed micromachined ultrasonic atomizer are illustrated for challenging fluid atomization examples from a variety of applications ranging from fuel processing on small scales to ultra-soft electrospray ionization of biomolecules for bioanalytical mass spectrometry.
|
50 |
Drop-on-demand inkjet deposition of complex fluid on textilesWang, Xi 06 August 2008 (has links)
The objective of the research was to develop fundamental understanding of the process of deposition of complex mixtures by the inkjet method. The rheological properties and DOD drop formation dynamics of carbon black pigmented inkjet inks were investigated. It was found that the suspension microstructure responses to bulk motions, leading to shear rate and time dependent shear viscosity. However, DOD drop formation dynamics of highly pigmented inkjet ink and pure Newtonian fluid is similar even though shear rate up to 105 s-1 exists during inkjet jetting process. A proposed explanation for these observations is that the shearing time during DOD drop ejection is insufficient for changing and stabilizing the microstructure of the suspension. The effects of signal amplitude and jetting frequency on DOD drop formation dynamics of pure Newtonian fluids were investigated. A transition of DOD drop formation dynamics when the inkjet nozzle is switched from idle to jetting was identified. A qualitative investigation of DOD drop impaction and post-impaction behavior on inkjet paper and textiles was carried out. Dynamics of DOD drop accumulation and spreading on the substrates and final ink distribution show drastic differences between these two substrates.
|
Page generated in 0.1084 seconds