• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Some Properties of Hilbert Space

Parker, Donald Earl 06 1900 (has links)
This thesis is a study of fundamental properties of Hilbert space, properties of linear manifold, and realizations of Hilbert space.
2

Some Theorems and Product Spaces

Bethel, Edward Lee 06 1900 (has links)
This thesis is a study of some axioms and theorems, and product spaces.
3

Geometry of Minkowski Planes and Spaces -- Selected Topics

Wu, Senlin 03 February 2009 (has links) (PDF)
The results presented in this dissertation refer to the geometry of Minkowski spaces, i.e., of real finite-dimensional Banach spaces. First we study geometric properties of radial projections of bisectors in Minkowski spaces, especially the relation between the geometric structure of radial projections and Birkhoff orthogonality. As an application of our results it is shown that for any Minkowski space there exists a number, which plays somehow the role that $\sqrt2$ plays in Euclidean space. This number is referred to as the critical number of any Minkowski space. Lower and upper bounds on the critical number are given, and the cases when these bounds are attained are characterized. Moreover, with the help of the properties of bisectors we show that a linear map from a normed linear space $X$ to another normed linear space $Y$ preserves isosceles orthogonality if and only if it is a scalar multiple of a linear isometry. Further on, we examine the two tangent segments from any exterior point to the unit circle, the relation between the length of a chord of the unit circle and the length of the arc corresponding to it, the distances from the normalization of the sum of two unit vectors to those two vectors, and the extension of the notions of orthocentric systems and orthocenters in Euclidean plane into Minkowski spaces. Also we prove theorems referring to chords of Minkowski circles and balls which are either concurrent or parallel. All these discussions yield many interesting characterizations of the Euclidean spaces among all (strictly convex) Minkowski spaces. In the final chapter we investigate the relation between the length of a closed curve and the length of its midpoint curve as well as the length of its image under the so-called halving pair transformation. We show that the image curve under the halving pair transformation is convex provided the original curve is convex. Moreover, we obtain several inequalities to show the relation between the halving distance and other quantities well known in convex geometry. It is known that the lower bound for the geometric dilation of rectifiable simple closed curves in the Euclidean plane is $\pi/2$, which can be attained only by circles. We extend this result to Minkowski planes by proving that the lower bound for the geometric dilation of rectifiable simple closed curves in a Minkowski plane $X$ is analogously a quarter of the circumference of the unit circle $S_X$ of $X$, but can also be attained by curves that are not Minkowskian circles. In addition we show that the lower bound is attained only by Minkowskian circles if the respective norm is strictly convex. Also we give a sufficient condition for the geometric dilation of a closed convex curve to be larger than a quarter of the perimeter of the unit circle.
4

Elementos da análise funcional para o estudo da equação da corda vibrante

Góis, Aédson Nascimento 26 August 2016 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, we are treated some elements of functional analysis such as Banach spaces, inner product spaces and Hilbert spaces, also studied Fourier series and at the end briefly consider the equation of the vibrating string. With this, you realize that you do not need a lot of theory in order to get significant results. / Neste trabalho, são tratados alguns elementos da análise funcional como espaços de Banach, espaços com produto interno e espaços de Hilbert, estudamos também séries de Fourier e no final consideramos brevemente a equação da corda vibrante. Com isso, percebe-se que não se precisa de muita teoria para conseguirmos resultados significativos.
5

Geometry of Minkowski Planes and Spaces -- Selected Topics

Wu, Senlin 13 November 2008 (has links)
The results presented in this dissertation refer to the geometry of Minkowski spaces, i.e., of real finite-dimensional Banach spaces. First we study geometric properties of radial projections of bisectors in Minkowski spaces, especially the relation between the geometric structure of radial projections and Birkhoff orthogonality. As an application of our results it is shown that for any Minkowski space there exists a number, which plays somehow the role that $\sqrt2$ plays in Euclidean space. This number is referred to as the critical number of any Minkowski space. Lower and upper bounds on the critical number are given, and the cases when these bounds are attained are characterized. Moreover, with the help of the properties of bisectors we show that a linear map from a normed linear space $X$ to another normed linear space $Y$ preserves isosceles orthogonality if and only if it is a scalar multiple of a linear isometry. Further on, we examine the two tangent segments from any exterior point to the unit circle, the relation between the length of a chord of the unit circle and the length of the arc corresponding to it, the distances from the normalization of the sum of two unit vectors to those two vectors, and the extension of the notions of orthocentric systems and orthocenters in Euclidean plane into Minkowski spaces. Also we prove theorems referring to chords of Minkowski circles and balls which are either concurrent or parallel. All these discussions yield many interesting characterizations of the Euclidean spaces among all (strictly convex) Minkowski spaces. In the final chapter we investigate the relation between the length of a closed curve and the length of its midpoint curve as well as the length of its image under the so-called halving pair transformation. We show that the image curve under the halving pair transformation is convex provided the original curve is convex. Moreover, we obtain several inequalities to show the relation between the halving distance and other quantities well known in convex geometry. It is known that the lower bound for the geometric dilation of rectifiable simple closed curves in the Euclidean plane is $\pi/2$, which can be attained only by circles. We extend this result to Minkowski planes by proving that the lower bound for the geometric dilation of rectifiable simple closed curves in a Minkowski plane $X$ is analogously a quarter of the circumference of the unit circle $S_X$ of $X$, but can also be attained by curves that are not Minkowskian circles. In addition we show that the lower bound is attained only by Minkowskian circles if the respective norm is strictly convex. Also we give a sufficient condition for the geometric dilation of a closed convex curve to be larger than a quarter of the perimeter of the unit circle.

Page generated in 0.0711 seconds