• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Architecture Alternatives for Time-interleaved and Input-feedforward Delta-Sigma Modulators

Gharbiya, Ahmed 31 July 2008 (has links)
This thesis strives to enhance the performance of delta-sigma modulators in two areas: increasing their speed and enabling their operation in a low voltage environment. Parallelism based on time-interleaving can be used to increase the speed of delta-sigma modulators. A novel single-path time-interleaved architecture is derived and analyzed. Finite opamp gain and bandwidth result in a mismatch between the noise transfer functions of the internal quantizers which degrades the performance of the new modulator. Two techniques are presented to mitigate the mismatch problem: a hybrid topology where the first stage uses multiple integrators while the rest of the modulator uses a single path of integrators and a digital calibration method. The input-feedforward technique removes the input-signal component from the internal nodes of delta-sigma modulators. The removal of the signal component reduces the signal swing and distortion requirements for the opamps. These characteristics enable the reliable implementation of delta-sigma modulators in modern CMOS technology. Two implementation issues for modulators with input-feedforward are considered. First, the drawback of the analog adder at the quantizer input is identified and the capacitive input feedforward technique is introduced to eliminate the adder. Second, the double sampled input technique is proposed to remove the critical path generate by the input feedforward path. Novel input-feedforward delta-sigma architecture is proposed. The new digital input feedforward (DIFF) modulator maintains the low swing and low distortion requirements of the input feedforward technique, it eliminates the analog adder at the quantizer input, and it improves the achievable resolution. To demonstrate these advantages, a configurable delta-sigma modulator which can operate as a feedback topology or in DIFF mode is implemented in 0.18μm CMOS technology. Both modulators operate at 20MHz clock with an oversampling ratio of 8. The power consumption in the DIFF mode is 22mW and in feedback mode is 19mW. However, the DIFF mode achieves a peak SNDR of 73.7dB (77.1dB peak SNR) while the feedback mode achieves a peak SNDR of 64.3dB (65.9dB peak SNR). Therefore, the energy required per conversion step for the DIFF architecture (2.2 pJ/step) is less than half of that required by the feedback architecture (5.7 pJ/step).
2

Architecture Alternatives for Time-interleaved and Input-feedforward Delta-Sigma Modulators

Gharbiya, Ahmed 31 July 2008 (has links)
This thesis strives to enhance the performance of delta-sigma modulators in two areas: increasing their speed and enabling their operation in a low voltage environment. Parallelism based on time-interleaving can be used to increase the speed of delta-sigma modulators. A novel single-path time-interleaved architecture is derived and analyzed. Finite opamp gain and bandwidth result in a mismatch between the noise transfer functions of the internal quantizers which degrades the performance of the new modulator. Two techniques are presented to mitigate the mismatch problem: a hybrid topology where the first stage uses multiple integrators while the rest of the modulator uses a single path of integrators and a digital calibration method. The input-feedforward technique removes the input-signal component from the internal nodes of delta-sigma modulators. The removal of the signal component reduces the signal swing and distortion requirements for the opamps. These characteristics enable the reliable implementation of delta-sigma modulators in modern CMOS technology. Two implementation issues for modulators with input-feedforward are considered. First, the drawback of the analog adder at the quantizer input is identified and the capacitive input feedforward technique is introduced to eliminate the adder. Second, the double sampled input technique is proposed to remove the critical path generate by the input feedforward path. Novel input-feedforward delta-sigma architecture is proposed. The new digital input feedforward (DIFF) modulator maintains the low swing and low distortion requirements of the input feedforward technique, it eliminates the analog adder at the quantizer input, and it improves the achievable resolution. To demonstrate these advantages, a configurable delta-sigma modulator which can operate as a feedback topology or in DIFF mode is implemented in 0.18μm CMOS technology. Both modulators operate at 20MHz clock with an oversampling ratio of 8. The power consumption in the DIFF mode is 22mW and in feedback mode is 19mW. However, the DIFF mode achieves a peak SNDR of 73.7dB (77.1dB peak SNR) while the feedback mode achieves a peak SNDR of 64.3dB (65.9dB peak SNR). Therefore, the energy required per conversion step for the DIFF architecture (2.2 pJ/step) is less than half of that required by the feedback architecture (5.7 pJ/step).

Page generated in 0.0379 seconds