• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 12
  • 8
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 142
  • 142
  • 142
  • 21
  • 15
  • 14
  • 14
  • 13
  • 13
  • 13
  • 13
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Food, energy and the environment from a Swedish perspective

Engström, Rebecka January 2006 (has links)
Det särskilda sektorsansvaret är en ordning inom miljöpolitiken som innebär att varje sektor har ansvar för att hantera de miljöproblem som orsakas inom sektorn. På grund av detta ansvar finns ett behov av att kartlägga miljöproblem från sektorer, att identifiera de viktigaste problemen och att hitta strategier för att minska miljöpåverkan. Jordbrukssektorn och energisektorn är två sektorer som orsakar stor miljöpåverkan, vilket gör dem intressanta som fallstudier. För att undersöka miljöpåverkan och möjligheten att minska denna i de båda sektorerna används ett systemanalytiskt perspektiv. Ett sådant angreppssätt ger möjlighet att analysera frågorna på ett mer genomgripande sätt, så att problemen inte endast förflyttas och istället skapar problem på andra håll i världen eller för framtida generationer, eller att ett problem reduceras medan ett annat istället ökar. Med ett systemperspektiv kan även indirekta effekter inkluderas när strategier för minskad miljöpåverkan i sektorn analyseras. De indirekta effekterna omfattar påverkan som sker uppströms och nedströms produktionskedjan, liksom påverkan från konsumenter. En metod för att bedöma miljöpåverkan från en sektor har utarbetats och testats på jordbruks- och energisektorn (Artikel I och II). Metoden är en hybridmetod baserad på miljöexpanderad input-output analys (IOA) och livscykelanalys (LCA). IOA-data från Miljöräkenskaperna används som utgångspunkt för inventeringen. Dessa data ger information om både direkt och indirekt miljöpåverkan från sektorn. För att fånga även sådana miljöaspekter som inte omfattas av miljöräkenskaperna används sedan de svenska miljökvalitetsmålen som en checklista, och information om den miljöpåverkan som inte finns med i IOA hämtas från litteraturen. För vidare hantering av den insamlade informationen om utsläpp och resursanvändning används karaktäriserings- och värderingsmetoder från LCA-metodologin. Därigenom kan s.k. hotspots, dvs de viktigaste problemen, identifieras. Baserat på denna hybridmetod blev resultatet att i jordbrukssektorn är de viktigaste frågorna biologisk mångfald, växthuseffekt, övergödning, användning av icke-förnybara resurser och troligen även toxicitet genom användningen av bekämpningsmedel. I energisektorn är de viktigaste problemen luftkvalitet, växthuseffekt, användning av icke-förnybara resurser och toxicitet. En analys av policies inom sektorerna (Artikel III) visar att både jordbruks- och energisektorn fokuserar delvis på de problem som identifierats som hotspots i sektorsanalyserna, men att vissa av de viktiga problemen inte ägnas så stor uppmärksamhet. I jordbrukssektorn är fokus huvudsakligen riktat mot biologisk mångfald och toxicitet, medan energisektorn framför allt fokuserar på växthuseffekt och användning av icke-förnybara resurser. En andra IOA-LCA hybridmetod, Energy Analysis Programme, har använts för att studera hushållens direkta och indirekta energianvändning (Artikel IV och V). Genom en kombination av IOA och processdata kan energiintensiteten (dvs. energi per monetär enhet, MJ/SEK) beräknas av ett stort antal varor och tjänster. När dessa beräkningar kombineras med information om hur ett hushåll spenderar sin inkomst kan hushållens totala energianvändning beräknas. Beräkningarna ger också information om hur inkomsten kan spenderas på mer energisnåla sätt. En ytterligare studie gjordes för att visa på betydelsen av minskat livsmedelssvinn som strategi för minskad miljöpåverkan inom livsmedelssektorn (Artikel VI). Resultaten från studierna med konsumentperspektiv kan användas för att identifiera strategier för hur konsumenterna kan bidra till minskad miljöpåverkan i de båda fallsektorerna. För jordbrukssektorns del kan konsumenterna bidra till minskad miljöpåverkan framför allt genom en minskad konsumtion av animalier. När det gäller energisektorn är minskad energianvändning en viktig strategi, liksom att fortsatt sträva efter att ersätta fossila bränslen och uran med förnybara bränslen. / National sector responsibility legislation places specific obligations on Swedish sector authorities to handle environmental issues within their sector. Because of this responsibility, there is a need to map environmental impacts from sectors and to identify key problems and strategies to reduce impacts in each sector. Agriculture and energy are two sectors causing severe environmental impacts, and these are therefore interesting as case studies. Employing a systems perspective when exploring impacts and options for their reduction ensures that problems are not simply shifted in time or space or between problems, but are considered in a holistic manner. Using this perspective, indirect effects such as changes upstream or downstream of the production chain, as well as among consumers, can be considered when seeking strategies to reduce environmental impacts in a sector. A method to investigate environmental impacts from a sector was developed and tested in the cases of agriculture and energy (Papers I and II). The method was based on environmentally extended Input-Output Analysis (IOA) and Life Cycle Assessment (LCA). IOA-data from Swedish Environmental Accounts were used as the starting point for the inventory. Such data provide information on direct and indirect impacts from the sector. To capture those aspects not included in the Environmental Accounts, the Swedish Environmental Quality Objectives were subsequently used as a checklist, and information on the missing aspects was obtained from literature. For further processing of the data, characterisation and weighting methods from LCA methodology were used to identify hotspots, i.e. the most important problems. The results showed that biodiversity, greenhouse effect, eutrophication, use of non-renewable resources and toxicity were potential hotspots in the agriculture sector. In the energy sector, the hotspots were air quality, greenhouse effect, use of non-renewable resources and toxicity. Analysis of sector policies (Paper III) showed that both sectors are focusing on some of the hotspots identified, but other important problems are not receiving sufficient attention. In the agriculture sector, the focus is principally on biodiversity and toxicity, while the energy sector mainly focuses on issues of climate change and non-renewable resources. A second hybrid IOA-LCA method (Energy Analysis Programme, EAP) was employed to study direct and indirect use of energy carriers in households (Papers IV and V). Through a combination of IOA and process data, the energy intensity (energy per monetary unit, e.g. MJ/SEK) of a large number of goods and services was calculated. When combined with information on household expenditure, these data provided information on total household use of fuels and electricity and provided insights into spending patterns that could result in lower energy intensity. A final study investigated the significance of reducing food losses as a strategy to reduce environmental impacts from the food sector (Paper VI). The results from the studies with a consumer perspective were used to identify how consumers can contribute to reducing environmental impacts in the two sectors investigated. For agriculture, consumers can help reduce impacts through reduced consumption of animal products, while for energy, reduced energy use in households is important, as is further substitution of fossil fuels. / QC 20110124
102

Spatial diffusion of economic impacts of integrated ethanol-cattle production complex in Saskatchewan

Musaba, Emmanuel Chibanda 01 January 1996 (has links)
Communities of different sizes in Saskatchewan seeking economic opportunities have shown interest in ethanol production because of the perceived benefits a region can capture from such a project. In spite of this interest and the perceived benefits, no information on the type and magnitude of economic impacts which would accrue to different sized communities existed. This study was undertaken to fill this information gap by establishing facts on the economic impacts various levels of communities could capture from ethanol-cattle production complexes. Since Saskatchewan communities operate in a hierarchical fashion and are classified into seven levels using central place theory, questions concerning economic development should be viewed in a regional hierarchical framework. A seven-region hierarchically-based interregional input-output model for the Saskatchewan economy was constructed using the Supply-Demand Pool (SDP) method in combination with the logical assumptions regarding trade patterns within the central place region. It was assumed that higher-level regions are surplus regions in goods produced by non-primary sectors, and hence ship excess supply to producers and final users in the dominated lower-level regions and outside of the province. On the other hand, it was assumed that the hinterland region dominates trade in goods in the primary sectors. The hinterland earned income by producing and supplying goods and services in the primary sectors to the higher-level regions and outside the province. The model consisted of 14 aggregated sectors seven household sectors, and allowed for net flows of labour income through commuting patterns of workers who resided in the seven regions. At the same time the consumption expenditures of residents in a particular region were adjusted for outshopping purchases. The estimated model was used to assess the economic impacts from both the construction and operation phase of an integrated ethanol-cattle production complex across six hierarchical regions. The major findings of this study were that, under both phases of the project, intraregional output and labor income impacts occurring in the high level regions were larger than those in the lower-level regions. Also, the higher-level regions experienced larger interregional impacts and had spillover coefficients of smaller magnitude compared to lower-level regions. The intraregional output and labor income impacts tended to decrease as one moves down the hierarchy from top to bottom regions. On the other hand, the spillovers or leakages were increasing as one moves down the hierarchy from higher-level regions to lower-level regions. The higher-level regions have more diversified economies and smaller leakages of income and spending than lower-level regions. On the other hand, lower-level regions experienced large income leakages through input purchases and consumer spending in neighbouring higher-level regions. The results indicate that lower-level regions will not benefit more than higher-level regions from the development of an integrated ethanol-cattle production complex. Thus, if the goal of public funding of ethanol projects is to maximize impacts in the project-region, then higher-level regions would be preferred to lower-level regions. This raises a concern that the opportunity of pursuing regional development through ethanol processing may not reach all those communities who need it the most, especially the smaller communities. On the other hand, if the objective of rural development is to solve the problems of rural communities, the policy-makers, could target lower-level regions specially those experiencing economic decline. It is important to mention that integrated ethanol-cattle production continues to enjoy subsidies from the governments. (Abstract shortened by UMI.)
103

Food, energy and the environment from a Swedish perspective

Engström, Rebecka January 2006 (has links)
<p>Det särskilda sektorsansvaret är en ordning inom miljöpolitiken som innebär att varje sektor har ansvar för att hantera de miljöproblem som orsakas inom sektorn. På grund av detta ansvar finns ett behov av att kartlägga miljöproblem från sektorer, att identifiera de viktigaste problemen och att hitta strategier för att minska miljöpåverkan. Jordbrukssektorn och energisektorn är två sektorer som orsakar stor miljöpåverkan, vilket gör dem intressanta som fallstudier.</p><p>För att undersöka miljöpåverkan och möjligheten att minska denna i de båda sektorerna används ett systemanalytiskt perspektiv. Ett sådant angreppssätt ger möjlighet att analysera frågorna på ett mer genomgripande sätt, så att problemen inte endast förflyttas och istället skapar problem på andra håll i världen eller för framtida generationer, eller att ett problem reduceras medan ett annat istället ökar. Med ett systemperspektiv kan även indirekta effekter inkluderas när strategier för minskad miljöpåverkan i sektorn analyseras. De indirekta effekterna omfattar påverkan som sker uppströms och nedströms produktionskedjan, liksom påverkan från konsumenter.</p><p>En metod för att bedöma miljöpåverkan från en sektor har utarbetats och testats på jordbruks- och energisektorn (Artikel I och II). Metoden är en hybridmetod baserad på miljöexpanderad input-output analys (IOA) och livscykelanalys (LCA). IOA-data från Miljöräkenskaperna används som utgångspunkt för inventeringen. Dessa data ger information om både direkt och indirekt miljöpåverkan från sektorn. För att fånga även sådana miljöaspekter som inte omfattas av miljöräkenskaperna används sedan de svenska miljökvalitetsmålen som en checklista, och information om den miljöpåverkan som inte finns med i IOA hämtas från litteraturen. För vidare hantering av den insamlade informationen om utsläpp och resursanvändning används karaktäriserings- och värderingsmetoder från LCA-metodologin. Därigenom kan s.k. hotspots, dvs de viktigaste problemen, identifieras.</p><p>Baserat på denna hybridmetod blev resultatet att i jordbrukssektorn är de viktigaste frågorna biologisk mångfald, växthuseffekt, övergödning, användning av icke-förnybara resurser och troligen även toxicitet genom användningen av bekämpningsmedel. I energisektorn är de viktigaste problemen luftkvalitet, växthuseffekt, användning av icke-förnybara resurser och toxicitet.</p><p>En analys av policies inom sektorerna (Artikel III) visar att både jordbruks- och energisektorn fokuserar delvis på de problem som identifierats som hotspots i sektorsanalyserna, men att vissa av de viktiga problemen inte ägnas så stor uppmärksamhet. I jordbrukssektorn är fokus huvudsakligen riktat mot biologisk mångfald och toxicitet, medan energisektorn framför allt fokuserar på växthuseffekt och användning av icke-förnybara resurser.</p><p>En andra IOA-LCA hybridmetod, Energy Analysis Programme, har använts för att studera hushållens direkta och indirekta energianvändning (Artikel IV och V). Genom en kombination av IOA och processdata kan energiintensiteten (dvs. energi per monetär enhet, MJ/SEK) beräknas av ett stort antal varor och tjänster. När dessa beräkningar kombineras med information om hur ett hushåll spenderar sin inkomst kan hushållens totala energianvändning beräknas. Beräkningarna ger också information om hur inkomsten kan spenderas på mer energisnåla sätt. En ytterligare studie gjordes för att visa på betydelsen av minskat livsmedelssvinn som strategi för minskad miljöpåverkan inom livsmedelssektorn (Artikel VI). Resultaten från studierna med konsumentperspektiv kan användas för att identifiera strategier för hur konsumenterna kan bidra till minskad miljöpåverkan i de båda fallsektorerna. För jordbrukssektorns del kan konsumenterna bidra till minskad miljöpåverkan framför allt genom en minskad konsumtion av animalier. När det gäller energisektorn är minskad energianvändning en viktig strategi, liksom att fortsatt sträva efter att ersätta fossila bränslen och uran med förnybara bränslen.</p> / <p>National sector responsibility legislation places specific obligations on Swedish sector authorities to handle environmental issues within their sector. Because of this responsibility, there is a need to map environmental impacts from sectors and to identify key problems and strategies to reduce impacts in each sector. Agriculture and energy are two sectors causing severe environmental impacts, and these are therefore interesting as case studies.</p><p>Employing a systems perspective when exploring impacts and options for their reduction ensures that problems are not simply shifted in time or space or between problems, but are considered in a holistic manner. Using this perspective, indirect effects such as changes upstream or downstream of the production chain, as well as among consumers, can be considered when seeking strategies to reduce environmental impacts in a sector.</p><p>A method to investigate environmental impacts from a sector was developed and tested in the cases of agriculture and energy (Papers I and II). The method was based on environmentally extended Input-Output Analysis (IOA) and Life Cycle Assessment (LCA). IOA-data from Swedish Environmental Accounts were used as the starting point for the inventory. Such data provide information on direct and indirect impacts from the sector. To capture those aspects not included in the Environmental Accounts, the Swedish Environmental Quality Objectives were subsequently used as a checklist, and information on the missing aspects was obtained from literature. For further processing of the data, characterisation and weighting methods from LCA methodology were used to identify hotspots, i.e. the most important problems.</p><p>The results showed that biodiversity, greenhouse effect, eutrophication, use of non-renewable resources and toxicity were potential hotspots in the agriculture sector. In the energy sector, the hotspots were air quality, greenhouse effect, use of non-renewable resources and toxicity.</p><p>Analysis of sector policies (Paper III) showed that both sectors are focusing on some of the hotspots identified, but other important problems are not receiving sufficient attention. In the agriculture sector, the focus is principally on biodiversity and toxicity, while the energy sector mainly focuses on issues of climate change and non-renewable resources.</p><p>A second hybrid IOA-LCA method (Energy Analysis Programme, EAP) was employed to study direct and indirect use of energy carriers in households (Papers IV and V). Through a combination of IOA and process data, the energy intensity (energy per monetary unit, e.g. MJ/SEK) of a large number of goods and services was calculated. When combined with information on household expenditure, these data provided information on total household use of fuels and electricity and provided insights into spending patterns that could result in lower energy intensity. A final study investigated the significance of reducing food losses as a strategy to reduce environmental impacts from the food sector (Paper VI). The results from the studies with a consumer perspective were used to identify how consumers can contribute to reducing environmental impacts in the two sectors investigated. For agriculture, consumers can help reduce impacts through reduced consumption of animal products, while for energy, reduced energy use in households is important, as is further substitution of fossil fuels.</p>
104

Liens inter-industriels et connexions inter-urbaines dans trois agglomerations importantes du Québec

Robin, Roland. January 1975 (has links)
No description available.
105

Carbon footprint decomposition in MRIO models: identifying EU supply-chain hot spots and their structural changes over time

Wieland, Hanspeter, Giljum, Stefan 11 1900 (has links) (PDF)
Politics' demand for informative consumption-based emission assessments based on multi-regional input output (MRIO) databases is steadily increasing. Based on the MRIO database EXIOBASE 3, we exemplify the utility of a range of analytical tools and discus their potential insights for consumption-based policies. The analysis decomposes the overall EU carbon footprint into product groups as well as into emitting regions. Subsequently, we illustrate the potential of applying production layer decomposition (PLD) and structural path analysis (SPA) for the assessment of global supply-chains related to the EU carbon footprint and their structural changes over time. We close with some policy ecommendations on reducing carbon footprint hot spots. / Series: Ecological Economic Papers
106

Avaliação dos indicadores de energia e emissões de GEE da gasolina e óleo diesel no Brasil através da análise de insumo - produto : Evaluation of energy and GHG emissions indicators of gasoline and diesel oil in Brazil by the input - output analysis / Evaluation of energy and GHG emissions indicators of gasoline and diesel oil in Brazil by the input - output analysis

Canto, Simone Tatiane do, 1981- 24 August 2018 (has links)
Orientadores: Marcelo Pereira da Cunha, Joaquim Eugênio Abel Seabra / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica / Made available in DSpace on 2018-08-24T19:54:08Z (GMT). No. of bitstreams: 1 Canto_SimoneTatianedo_M.pdf: 1446988 bytes, checksum: 3c884c3df852de562463eee9e45e87b2 (MD5) Previous issue date: 2014 / Resumo: Este trabalho tem como objetivo avaliar os indicadores de energia e emissões de gases de efeito estufa (GEE) na cadeia produtiva da gasolina e do óleo diesel mineral no Brasil, com uso do modelo de insumo-produto monetário e híbrido, de modo a realizar, também, uma comparação entre os seus resultados. O ano base utilizado foi de 2009, ano mais recente possível de estimar a matriz de insumo-produto a partir dos dados divulgados pelo Instituto Brasileiro de Geografia e Estatística (IBGE). Os modelos (monetário e híbrido) contêm 25 setores e 114 produtos; a técnica permite que sejam computados todos os efeitos diretos e indiretos envolvidos na cadeia produtiva dos setores avaliados. A base de dados usada consistiu, basicamente, nas tabelas de recursos e usos do IBGE (relativas ao ano de 2009), bem como na matriz consolidada relativa aos setores e produtos energéticos (também de 2009) do Balanço Energético Nacional (BEN), divulgado pela Empresa de Pesquisa Energética (EPE). Os resultados obtidos com os dois modelos foram muito próximos, tanto para a gasolina quanto para o óleo diesel; em geral, os efeitos indiretos capturados no modelo híbrido foram um pouco maiores dado o maior encadeamento entre os setores energéticos quando as transações setorias entre estas atividades são computadas em unidades físicas. Com o uso do modelo híbrido, os principais resultados obtidos são de 1,201 ktep e 1,202 ktep de energia incorporados em cada 1 ktep de gasolina e óleo diesel, respectivamente; com relação às emissões de GEE, os indicadores encontrados são de 75,32 gCO2eq/MJ para a gasolina e 86,91 gCO2eq/MJ para o óleo diesel / Abstract: The goal of this study is to evaluate energy and GHG emissions indicators for gasoline and diesel oil in Brazil; the methodology chosen was the Input-Output (IO) Analysis. For this purpose, an economic IO model and a hybrid IO model were made to provide a comparison between them. The analysis considers 2009 as base year, because this is the most recent year which is possible to estimate the Brazilian input-output matrix from official data when the project started. Both models (economic and hybrid) have 25 sectors and 114 commodities; the approach allows all direct and indirect effects through production chain to be estimated. The main data collected and used to build the models were the use and make matrices (provided by The Brazilian Institute of Geography and Statistics ¿ IBGE) and the consolidated matrix with energy flows for primary and secondary energy sources (provided by The Brazilian Energy Research Company ¿ EPE). The results obtained with both models are very similar, considering gasoline as well as diesel oil; in general, the indirect effects captured by the hybrid model are a little bit higher due to the stronger linkage among the energy sectors when the transactions through these activities are accounted in physic (energy) units. From hybrid model, the main results are 1,201 toe and 1,202 toe embodied energy for 1 toe of gasoline and diesel oil, respectively; with respect to GHG emissions, the indicators are 75.32 gCO2eq/MJ to gasoline and 86.91 gCO2eq/MJ to diesel oil / Mestrado / Planejamento de Sistemas Energeticos / Mestra em Planejamento de Sistemas Energéticos
107

Destruição criativa e progresso técnico agrícola = avaliação dos impactos econômicos dos inoculantes na cultura da soja / Creative destruction agricultural and technical progress : assessing the economic impacts of inoculants in soybean

Silva Junior, Jaim José da, 1983- 20 August 2018 (has links)
Orientador: José Maria Ferreira Jardim da Silveira / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Economia / Made available in DSpace on 2018-08-20T09:07:38Z (GMT). No. of bitstreams: 1 SilvaJunior_JaimJoseda_M.pdf: 2525719 bytes, checksum: d38aa205a46d664074614f1c0f151298 (MD5) Previous issue date: 2012 / Resumo: O objetivo geral deste estudo é discutir a inserção da biotecnologia moderna no sistema de produção agrícola, com foco na nutrição vegetal. Nas lavouras brasileiras de soja, a tecnologia da inoculação é capaz de suprir toda a demanda das plantas por nitrogênio através da fixação biológica do nutriente. Com isso, o uso dos inoculantes permite a substituição integral dos fertilizantes nitrogenados no cultivo da soja no Brasil e constitui um processo de destruição criativa. Com intuito de avaliar de forma empírica o impacto econômico deste processo é desenvolvido um modelo insumo produto a partir da matriz insumo produto da economia brasileira do ano de 2006. A despeito da fixação biológica de nitrogênio, o uso dos inoculantes resulta também no enriquecimento da matéria orgânica do solo, em melhorias no padrão de germinação das sementes, em maior adsorção de nutrientes e no controle de estresses hídricos e térmicos do solo. Em conjunto, tais fatores possibilitam a prática de atividades agrícolas mais sustentáveis, sem comprometer o nível de produção. Porém, não são capazes de impulsionar a difusão dos inoculantes. A incorporação destes benefícios proporcionados pela inoculação ao sistema agrícola requer a construção de mecanismos de avaliação dos impactos dos inoculantes que extrapolem o âmbito dos mecanismos de mercado. Para isso, com base nas abordagens sistêmicas da inovação, este trabalho propõe ações que visam o fortalecimento da trajetória tecnológica dos inoculantes. Em linha com os objetivos deste estudo, a institucionalização de políticas de incentivo à difusão da inoculação constitui uma "porta de saída" para os esforços das organizações públicas de pesquisa e desenvolvimento agrícola e, aumentam as possibilidades de inovação em demais produtos biotecnológicos via o acúmulo de conhecimento nesta área / Abstract: The aim of this thesis is to discuss the insertion of modern biotechnology in the agriculture production system, in particular the plant nutrition. In the Brazilian soybean cultivation, the inoculation technology can supply all the nitrogen that plants need via the biological fixation of nutrients. Thus, the inoculation can replaces all the nitrogen fertilizers in soybean production representing a process of creative destruction. Seeking to empirically assess the economic impact of this process, an input-output model using the data from input-output matrix for the Brazil economy in 2006, is developed. In spite of nitrogen biological fixation, the inoculation also results in soil organic matter enrichment, better patterns of seed germination, great nutrients absorption and control of soil hydric and temperature stresses.Jointly, these factors contribute for more sustainable agricultures practices, without decreasing the production output. However, they cannot boost the diffusion of inoculation technology. To agriculture benefits from the adoption of inoculation technology it is necessary to build an evaluation mechanism that goes beyond the market mechanisms. Based on the systemic approaches innovation, this thesis recommends policies for strengthening the inoculation technology trajectory. In accordance with the proposal of this study, the institutionalization of policies that incentive the diffusion of inoculation technology represent a "way" to transform the efforts of public Research and Development centers in new products and process for agriculture. Additionally, it also increases the chance of innovation for other biotechnology products and processes via the learning by doing process / Mestrado / Ciências Economicas / Mestre em Ciências Econômicas
108

Managing human-induced material use : adding cyclic inter-sectoral flows to Physical Input-Output Tables to analyse the environmental impact of economic activity

Altimiras-Martin, Aleix January 2016 (has links)
Current human activity is degrading the environment and depleting biotic and abiotic resources at unheard-of rates, inducing global environmental change and jeopardising the development of humankind. The structure of human activity determines which resources are extracted, how they are transformed and where and how they are emitted back to the environment. Thus, the structure of human activity ultimately determines the human-Earth System interaction and human-induced environmental degradation. Several theories and empirical findings suggest that a cyclic structure would lower the resource requirements and emissions of the economic system, decoupling production and consumption from their environmental impacts. However, the cyclic structure has not been fully characterised nor related to the resource requirements or emission generation estimates of environmental impacts as calculated through models representing the physical structure of the economic system. This thesis is interested in developing tools to analyse the physical structure of the economic system and, ultimately, to develop a method to identify its cyclic structure and relate it to the environmental impact induced by economic activity. Using this new knowledge, it might be possible to reduce the environmental impact of the economy by altering its physical structure. In chapter 3, the different methods to calculate the emissions and resources associated to a given final demand of physical input-output tables are reviewed because they gather different results; it is argued that only two are valid. Surprisingly, these two methods reveal different physical structures; these are explored using a backward linkage analysis and their differences explained. It is found that only one method is appropriate to analyse the physical structure of the economic system and this method is in fact a new input-output model capable of tracing by-products as final outputs. Also, since traditional input-output structural analyses provide aggregate measures, a visual representation of input-output tables enabling researchers to perform disaggregated structural analyses and identify intersectoral patterns is developed. In chapter 4, a method to derive the full cyclic structure of the economic system is developed using network analysis within the Input-Output framework; it identifies the intersectoral cycles and the resources and emissions associated to cycling. It is shown that cyclic flows maximise the system throughput but lower the resource efficiency of the system vis-à-vis the system outputs. It is demonstrated that 1) the complete structure is composed of a cyclic-acyclic and a direct-indirect sub-structure, challenging the common understanding of the functioning of the structure, and 2) cycling is composed of pre-consumer cycling, post-consumer cycling, re-cycling and trans-cycling. In chapter 5, a set of indicators are developed to capture the weight and emissions associated to each sub-structure and the sub-structures are related to the economy's resource efficiency and emissions. In chapter 6, it is illustrated how to use the concepts, indicators and methods developed in previous chapters to identify strategies to improve the resource efficiency of the economy by altering its structure. Finally, in chapter 7, it is suggested to refine the definition of recycling to integrate the different systemic effects of pre-consumer and post-consumer cycling and it is argued that the ideal structure of a circular, close-loop economy should minimise its pre-consumer cycling in favour of more efficient acyclic flows while maximising its post-consumer cycling.
109

THE COMPETITIVE POSITION OF TURKEY WITH RESPECT TO THE EU AND CHINA: AN INSTITUTIONAL AND INPUT-OUTPUT ANALYSIS / EUと中国に対するトルコの競争的地位:制度的分析と産業連関分析

Emre, Ünal 23 September 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(経済学) / 甲第19950号 / 経博第537号 / 新制||経||278(附属図書館) / 33046 / 京都大学大学院経済学研究科経済学専攻 / (主査)教授 宇仁 宏幸, 准教授 矢野 剛, 准教授 COLPAN Meziyet Asli / 学位規則第4条第1項該当 / Doctor of Economics / Kyoto University / DGAM
110

Liens inter-industriels et connexions inter-urbaines dans trois agglomerations importantes du Québec

Robin, Roland. January 1975 (has links)
No description available.

Page generated in 0.0402 seconds