• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 7
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Study of Fused Fiber Coupler Package

Chen, Hua-Shan 06 July 2000 (has links)
The purpose of this study is to develop the optimum design of fiber coupler package. Three different kinds of fiber coupler packages are investigated to understand the results of the optical properties under the environmental tests. The environmental test includes the temperature cycling, water immerse, and impact test. The results of fiber coupler packages will be accepted if the measurements for the optical properties are within a small range change under the environmental tests. There are so many components in fiber coupler packages that it is difficult to identify the specific components which should responsible for the optical property changes under environmental test. Therefore, a metallographic analysis is used to understand the structure change of fiber coupler package under environmental test. In this work, the optimum design of fiber coupler package are (1) a ceramic substrate, (2) the epoxy which bonding fiber and substrate should mixed with silicon powder, (3) the silicone should fill the empty space of steel tube fully, and (4) a good protection between the fiber and steel tube.
2

High-Speed SiGe HBT BiCMOS Circuits for Communication and Radar Transceivers

Kuo, Wei-Min 30 October 2006 (has links)
This dissertation explores high-speed silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) bipolar complementary metal oxide semiconductor (BiCMOS) circuits for next-generation ground- and space-based millimeter-wave (MMW >= 30 GHz) communication front-ends and X-band (8 to 12 GHz) radar (radio detection and ranging) modules. The requirements of next-generation transceivers, for both radar and communication applications, are low power, small size, light weight, low cost, high performance, and high reliability. For this purpose, the high-speed circuits that satisfy the demanding specifications of next-generation transceivers are implemented in SiGe HBT BiCMOS technology, and the device-circuit interactions of SiGe HBTs to transceiver building blocks for performance optimization and radiation tolerance are investigated. For X-band radar module components, the dissertation covers: (1) The design of an ultra-low-noise X-band SiGe HBT low-noise-amplifier (LNA). (2) The design of low-loss shunt and series/shunt X-band Si CMOS single-pole double-throw (SPDT) switches. (3) The design of a low-power X-band SiGe HBT LNA for near-space radar applications. For MMW communication front-end circuits, the dissertation covers: (4) The design of an inductorless SiGe HBT ring oscillator for MMW operation. (5) The study of emitter scaling and device biasing on MMW SiGe HBT voltage-controlled oscillator (VCO) performance. (6) The study of proton radiation on MMW SiGe HBT transceiver building blocks.
3

DESIGN OF PARTIAL ENCLOSURES FOR ACOUSTICAL APPLICATIONS

Carter, Amy Elizabeth 01 January 2006 (has links)
Enclosures are a very common way to reduce noise emissions from machinery. However, enclosures display complex acoustic behavior that is difficult to predict. The research presented in this thesis uses the boundary element method in order to better understand the acoustic behavior of a partial enclosure. Insertion loss was used as the performance measure and the effect of several design factors on the overall insertion loss was documented. Results indicate that the most important factors affecting enclosure performance are the opening size, amount of absorption, and the source-to-opening distance.
4

Hluková izolace hydraulického aktuátoru INOVA / Acoustic insulation of the hydraulic actuator INOVA

Kaščák, Pavol January 2020 (has links)
This thesis deals with the design and testing of the acoustic enclosure for the Inova hydraulic actuator. The purpose of this enclosure is the acoustic insulation of the actuator and its parts, to achieve better acoustic conditions when performing acoustic diagnostics on this device. The first part deals with the theoretical basis of acoustic enclosures, the possibilities of modelling of acoustic problems and market research in materials usable for enclosure construction. The second part deals with the analysis of actuator noise and the localization of noise sources in the laboratory. Subsequently, the choice of material and concepts of the acoustic enclosure was made. Then, the final design solution was selected. The final design solution was subjected to acoustic simulations to predict insertion loss and determine the dimensions of the enclosure. The manufactured enclosure was tested in a semi-anechoic chamber and finally on the Inova actuator. Finally, the measurement results and simulation results are compared with each other.
5

DETERMINATION OF ISOLATOR TRANSFER MATRIX AND INSERTION LOSS WITH APPLICATION TO SPRING MOUNTS

Sun, Shishuo 01 January 2015 (has links)
Transmissibility is the most common metric used for isolator characterization. However, engineers are becoming increasingly concerned about energy transmission through an isolator at high frequencies and how the compliance of the machine and foundation factor into the performance. In this study, the transfer matrix approach for isolator characterization is first reviewed. Two methods are detailed for determining the transfer matrix of an isolator using finite element simulation. This is accomplished by determining either the mobility or impedance matrix for the isolator and then converting to a transfer matrix. One of the more useful metrics to characterize the high frequency performance of an isolator is insertion loss. Insertion loss is defined as the difference in transmitted vibration in decibels between the unisolated and isolated cases. Insertion loss takes into account the compliance on the source and receiver sides. Accordingly, it has some advantages over transmissibility which is a function of the damping and mounted resonant frequency. A static analysis is to preload the isolator so that stress stiffening is accounted for. This is followed by modal and forced response analyses to identify the transfer matrix of the isolator. In this paper, the insertion loss of spring isolators is examined as a function of several geometric parameters including the spring diameter, wire diameter, number of active coils, and height. Results demonstrate how modifications to these parameters affect the insertion loss and the first surge frequency.
6

Development of FPW Device with Groove Reflection Structure Design

James, Chang 06 September 2011 (has links)
Utilizing bulk micromachining technology, this thesis aimed to develop a flexural plate-wave(FPW) device with novel groove reflection microstructure for high-sensitivity and low insertion-loss biomedical microsystem applications. The influences of the amount and depth of the groove and the distance between the groove and the boundary of ZnO piezoelectric thin-film (DGB) on the reduction of insertion-loss and the enhancement of quality factor (Q) and electromechanical coupling coefficient (K2) were investigated. Three critical technology modules established in this thesis are including the development of (1) a sputtering deposition process of high C-axis (002) orientation ZnO piezoelectric thin-film, (2) an electrochemical etch-stop technique of silicon anisotropic etching and (3) an integration process of FPW device. Firstly, under the optimized conditions of the sputtering deposition process (300¢J substrate temperature, 200 W radio-frequency (RF) power and 30/70 Ar/O2 gas flow ratio), a high C-axis (002) orientated ZnO piezoelectric thin-film with a high X-ray diffraction (XRD) intensity (50,799 a.u.) and narrow full width at half maximum (FWHM = 0.383¢X) can be demonstrated. The peak of XRD intensity of the standard ZnO film occurs at diffraction angle 2£c = 34.422¢X, which matches well with our results (2£c = 34.357¢X). Secondary, an electrochemical etch-stop system with three electrode configuration has been established in this research and the etching accuracy can be controlled to less than 1%. Thirdly, this thesis has successfully integrated the main fabrication processes for developing the FPW device which are including six thin-film deposition processes and six photolithography processes. The implemented FPW device with RIE etched groove reflection microstructure presents a low insertion-loss of -12.646 dB, center frequency of 114.7 MHz, Q factor of 12.76 and K2 value of 0.1876%.
7

Development of Micro-transformer by MEMS Technology for Microwave Communication System

Sun, Chian-Hao 28 July 2012 (has links)
The conventional planar micro transformers presented very low quality-factor (Q<10) and very high insertion loss (-6 ~ -10 dB) at high operation frequency since most of the microwave power is dissipated through the silicon substrate. To increase the quality-factor and reduce the insertion loss of silicon-based transformers, this dissertation presents a two-port and three-port micro transformers with suspending structure utilizing the micro-electro-mechanical systems (MEMS) technology. The proposed silicon-based transformers are constructed by two winding and suspending micro inductors. Each suspending micro inductor consists of a 0.32 &#x00B5;m-thick TaN/Ta/Cu bottom electrode, a 10 &#x00B5;m-height supporting copper vias and a 6 &#x00B5;m-thick spiral copper conducting layer. This research adopts the Taguchi method and commercial electromagnetic simulation software (Ansoft-HFSS) to optimize the dimensional specifications of the copper conducting layer. Many high frequency characteristics of the suspending micro transformers are simulated, including the inductance, the magnetic coupling factor, the quality-factor, the magnitude imbalance, the phase imbalance, the common mode rejection ratio (CMRR) and the insertion loss. In this research, the surface micromachining and electrochemical deposition techniques are used to implement the suspending micro transformers. The main fabrication steps include five photolithography and eight thin-film deposition processes. According to the simulation and measurement results from the commercial network analyzer (Agilent-E8364B) and software (Agilent-ADS), the implemented two-port transformer demonstrates a high magnetic coupling factor (0.78) and a very high quality-factor (Q=17.20) at 5.2 GHz. On the other hand, the proposed three-port transformer presents a low magnitude imbalance (-0.02 dB), a low phase imbalance (1.65¢X), a high CMRR (36.78 dB) and a very low insertion loss (-4.52 dB) under the same operation frequency. In this dissertation, a novel suspending micro transformer has been developed and characterized. The proposed micro transformer is very suitable for being used in the portable microwave communication system due to its small chip size (0.7 mm¡Ñ0.7 mm¡Ñ0.5 mm) and excellent high-frequency characterization.
8

Development of Flexural Plate-wave Device with Focused Interdigital Transducers Design

Lin, Ji-Yuan 31 July 2012 (has links)
The conventional flexural plate-wave (FPW) device has advantages of high mass sensitivity, low phase velocity and low operation frequency. However, conventional FPW devices usually present a high insertion loss and low fabrication yield. This thesis aimed to reduce the insertion loss of conventional FPW devices. The influences of geometry of inter-digital transducers (IDTs), pair number of IDTs, depth of focus and length of delay line on the insertion loss of FPW device are investigated. This research utilizes bulk micromachining technique to develop a low insertion-loss FPW device and the main fabrication steps include seven thin-film deposition and four photolithography processes. As the wavelength is 100 £gm, pair number of IDTs is 20, depth of focus is 1000 £gm and length of delay line is 500 £gm, the measured insertion loss of the implemented FPW device with conventional parallel-type IDTs and novel focus-type IDTs are equal to -48 dB and -45.06 dB, respectively. On the other hand, the insertion loss of FPW device with focus-type 25-pairs IDTs (-43.69 dB) is smaller than that of FPW device with focus-type 20-pairs IDTs (-45.06 dB). Additional, the measured insertion loss of FPW device with 500 £gm focus depth (-41.47 dB) is smaller than that of FPW devices with 1000 £gm focus depth (-43.69 dB) or with 1500 £gm focus depth (-45.39 dB). Furthermore, the FPW device with 500 £gm delay line presents a smaller insertion loss (-40.46 dB) than that of FPW devices with 250 £gm delay line (-41.47 dB) or with 750 £gm delay line (-40.95 dB). Finally, under the optimized specifications (focus-type/25 pairs IDTs, 500 £gm focus depth and 500 £gm delay line), the FPW-based microsensor demonstrates a high sensitivity (91.53 cm2/g), high sensing linearity (99.18 %) and low insertion loss (-40.46 dB), hence it is very suitable for development of biomedical sensing microsystem.
9

Sol-gel based Optical Splitters on Silicon Substrate

Hsu, Chao-kai 15 June 2005 (has links)
1 x N optical power splitters using hybrid sol-gel glasses based on buried waveguide structure on silicon substrate were fabricated. The advantage over conventional ridge structures is the fact that Y branch of the splitters can be easily obtained with the buried structure using standard photo lithography processes. Now we can successfully make the width of Y branch of less of 1um. Proximity printing was used to define the waveguide trench on sol-gel films. Then burying the sol-gel glass into the trench to define waveguide core. Finally the waveguide was packaged for measurement after coating a sol-gel top cladding layer onto the guiding layer. The propagation losses of this waveguide device are 0.69 dB/cm and 0.70 dB/cm for TE and TM polarized lights. The coupling losses are 1.57 dB and 1.89 dB for TE and TM lights with a index contrast of 0.66 %. The insertion loss and the branching loss of the 1¡Ñ2 splitter are 5.7 dB and 0.3 dB¡Arespectively.
10

Acoustical Analysis Of Exhaust Mufflers For Earth-moving Machinery

Olgar, Tarik 01 September 2009 (has links) (PDF)
This study concerns with acoustical analysis of exhaust mufflers for earth-moving machinery. The study arises from the fact that there is a need for further noise reduction emitted by earth-moving machinery produced by Hidromek Inc. in order to be on the safe side of the limits stated in European Noise Directive 2000/14/EC. The acoustical performance of the muffler is investigated both experimental and numerical means. A three-dimensional finite element method is performed to calculate the transmission loss. An experimental setup is also developed to measure the transmission loss. Chung-Blaser, two-source and two-load methods are applied to measure the transmission loss of single expansion chamber with extended inlet/outlet. The experimental setup is verified by comparing the test results obtained by two-load method with one-dimensional analytical solution obtained by transfer matrix method. Transmission loss of the muffler of interest, calculated by finite element method is compared with the experimental results. Sound power level of earth-moving machinery and insertion loss of the muffler is measured to investigate the acoustical performance of the muffler. These results can then be served as guidance for the acoustical design of a muffler.

Page generated in 0.0766 seconds