• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caractérisation du récepteur de l'insuline par spectrométrie de masse

Collard-Simard, Gabriel 13 April 2018 (has links)
La liaison de l'insuline à son récepteur de surface entraîne une autophosphorylation rapide de la sous-unité β du récepteur de l'insuline (RI), l'initiation de cascades de signalisation et l'internalisation rapide de complexes actifs dans l'appareil endosomal. L'autophosphorylation s'effectue sur trois tyrosines situées dans la boucle d'activation (Yl 146, Y1150, Y1151), deux tyrosines situées dans le domaine C-terminal (Y1316, Y1322) et d'une autre dans le domaine juxta-membranaire (Y960). Ces sites de phosphorylation ont été précédemment identifiés par des essais d'autophosphorylation effectués in vitro sur des fractions membranaires solubilisées. Dans le but d'identifier les sites tyrosines phosphorylés du RI internalisé in vivo, nous avons préparé des fractions Golgi/Endosomes (G/E) à partir de foie de rat suivant l'injection d'une dose d'insuline. Le RI a été immunoprécipité et analysé par spectrométrie de masse. Plusieurs sites de phosphorylation ont été identifiés et seules les formes mono phosphorylé Y1146 et Y1150 de la boucle d'activation ont été observées. Nous avons également identifié de façon non ambiguë plusieurs protéines associés au RI internalisé dont notamment Grb7 (growth factor receptor-bound protein 7), Grbl4 et ATIC (5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase). Nous avons confirmé, par des immunoprécipitations croisées dans les fractions G/E, l'association entre le RI et ATIC, une protéine impliquée dans les deux dernières étapes de la voie de biosynthèse de novo des purines. Les résultats obtenus suggèrent la présence d'un nouveau mécanisme par lequel ATIC, une protéine relativement abondante dans le cytosol et ayant pour substrat naturel AICAR, un insulino-mimétique, pourrait être un régulateur important de la réponse insulinique in vivo.
2

Étude sur l'endocytose du récepteur de l'insuline : rôle du nœud de signalisation ATIC / PTPLAD1

Boutchueng Djidjou, Martial 24 April 2018 (has links)
La cellule utilise des nœuds d’interactions protéiques relativement stables, conservés et souvent constitués d’adaptateurs moléculaires pour gérer des signaux reçus (synthèse, sécrétion, traffic, métabolisme, division), des problèmes de sécurité et de niveaux d’énergie. Nos résultats montrent que la cellule utilise aussi des nœuds relativement petits et dynamiques où des informations propres concernant des voies métaboliques apparemment indépendantes sont évaluées. Ces informations y sont intégrées localement et une décision y est prise pour action immédiate. Cette idée est supportée par notre étude sur le récepteur de l’insuline (RI). Ce récepteur transmembranaire à activité tyrosine kinase reconnaît un signal externe (insuline circulante) et engage la signalisation de l’insuline, les réponses métaboliques et le contrôle du glucose circulant. Le RI est aussi impliqué dans l’internalisation de l’insuline et sa dégradation dans les endosomes (clairance). Il régule donc indirectement la sécrétion de l’insuline par les cellules du pancréas endocrine. La signification pathophysiologique de l’endocytose du RI ainsi que les bases moléculaires d’une telle coordination sont peu connues. Nous avons construit un réseau d’interactions du RI (IRGEN) à partir d’un protéome de fractions Golgi-endosomales (G/E) hépatiques. Nous démontrons une forte hétérogénéité fonctionnelle autour du RI avec la présence des protéines ATIC, PTPLAD1, AMPKα et ANXA2. ANXA2 est une protéine impliquée dans la biogénèse et le transport endosomal. Nos résultats identifient un site de SUMOylation régulé par l’insuline dans sa région N-terminale. ATIC est une enzyme de la voie de synthèse des purines de novo dont le substrat AICAR est un activateur de l’AMPKα. Des analyses biochimiques in vitro et in vivo nous montrent que ATIC favorise la tyrosine phosphorylation du RI par opposition fonctionnelle à PTPLAD1. Une délétion partielle d’ATIC stimule l’activation de l’AMPK dont la sous-unité AMPKα2 apparaît déterminante pour le trafic du RI. Nous démontrons que ATIC, PTPLAD1, AMPKα, AICAR et ANXA2 contrôlent l’endocytose du RI à travers le cytosquelette d’actine et le réseau de microtubules. Nous ressortons un nœud de signalisation (ATIC, PTPLAD1, AMPKα) capable de détecter les niveaux d’activation du RI, d’énergie cellulaires (rapports AMP/ATP) et aussi d’agir sur la signalisation et l’endocytose du RI. Cette proximité moléculaire expliquerait le débat sur le mécanisme primaire du diabète de type 2 (DT2), notamment entre la sensibilité à l’insuline et sa clairance. Nous avons calculé un enrichissement de 61% de variants communs du DT2 parmi les protéines fonctionnellement proches du RI incluant RI, ATIC, AMPKα, KIF5A et GLUT2. Cet enrichissement suggère que l’hétérogénéité génétique révélée par les consortiums sur études génomiques (GWAS) converge vers des mécanismes peu étudiés de biologie cellulaire. / The normal cell deals efficiently with multiple signals, processes (synthesis, secretion, trafficking, metabolism, and division), and energy and security problems. To achieve these goals, the cell uses large and relatively stable proteins nodes (or hubs) often sustained by adapters. It appears that the cell also uses small, dynamics nodes where informations about apparently unconnected major pathways are evaluated. Not only these informations are locally integrated but also a decision is made for immediate action. This is exemplified here by the insulin receptor (IR). This receptor-tyrosine kinase recognizes signals from the outside (circulating insulin) and engages insulin signalling activity and the insulin response. Quite simultaneously, the insulin receptor is involved in insulin internalization and its subsequent degradation in endosomes (clearance of circulating insulin) and thus, it indirectly regulates insulin secretion by the -cells of the endocrine pancreas. The physiological significance of trafficking and the molecular bases of such coordination have received little attention. We constructed hepatic Golgi/endosomes (G/E) network of the internalized IR (IRGEN) and we found substantial heterogeneity within the close environment of IR, with the presence of ATIC, a metabolic enzyme of the de novo purine synthesis pathway, the putative tyrosine phosphatase PTPLAD1, the energy sensor AMPK and ANXA2, a protein involved in endosomes biogenesis and endosomal transport. Our results show that ANXA2 is SUMOylated on an insulin-dependent way at a non-concensus motif of its N-terminal domain. It appears that following insulin stimulation, the proteins ATIC, PTPLAD1, AMPKα associate within seconds with the activated IR and control its tyrosine kinase activity and traffic. We found that PTPLAD1 and AMPKα are rapidly compartmentalised within the plasma membrane (PM) and G/E fractions after insulin stimulation and that ATIC accumulates in the G/E fraction later. By using an in vitro reconstitution system and siRNA–mediated partial knockdown of ATIC and PTPLAD1 in HEK293 cells, we confirmed that ATIC, PTPLAD1 and AMPKα affect IR tyrosine phosphorylation and endocytosis and treatment with AICAR, increased IR endocytosis in cultured cells and in the liver. These results suggest the presence of a new signalling mechanism that senses in the same time adenylate synthesis, cell energy (ATP) and IR activation states and that acts consequently in regulating IR autophosphorylation and endocytosis. The IRGEN may explain the perceived promiscuity that exists between insulin resistance and clearance, as this new signalling node apparently controls both the IR activity and trafficking. The elevated number of common heritable variants associated with type 2 diabetes (T2D) in the actual IRGEN (more than 61 %) favours the idea that the confusing genetic heterogeneity converges however towards few biological mechanisms.
3

Rôle de la voie mTORC1/S6K1 dans la régulation de la signalisation de l'insuline dans les adipocytes

Veilleux, Alain 13 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2007-2008. / La sérine/thréonine kinase mTOR (mammalian target of rapamycin) participe à un rétrocontrôle négatif envers la voie IRS-1/PI3K/Akt. Dans les adipocytes et les myocytes, l'inhibition aiguë de la voie mTORCl/S6Kl augmente la signalisation de l'insuline par la voie IRS-1/PI3K/Akt et le transport du glucose en empêchant la phosphorylation négative d'IRS-1 sur serine. Dans cette étude, l'utilisation de l'interférence à l'ARN dans les adipocytes 3T3-L1 a confirmé le rôle des protéines mTOR, raptor et S6K1 dans le rétrocontrôle négatif sur la signalisation métabolique de l'insuline. Cependant, l'inhibition chronique de la voie mTORCl/S6Kl mène également à une réduction de l'action de l'insuline sur le transport du glucose. Cette dichotomie entre l'activation de la PI3K et le transport du glucose est attribuable à une diminution imprévue de l'activation d'Akt2 et de l'expression de GLUT4. Ainsi, l'inhibition chronique de la voie mTORCl/S6Kl pourrait ne pas être une approche efficace pour rétablir la sensibilité à l'insuline.
4

Les kératines 8/18 dans la régulation de la voie de signalisation et du trafic vésiculaire du récepteur de l'insuline chez les cellules hépatiques

Roux, Alexandra 24 April 2018 (has links)
Les filaments intermédiaires (FIs), de concert avec les microfilaments (MFs) et les microtubules (MTs), forment le cytosquelette. Contrairement aux quelques gènes qui codent pour les MFs d’actine et les MTs, exprimés dans toutes les cellules de l’organisme, les protéines des FIs sont codées par un grand nombre de gènes et classées en 6 types, selon la nature du tissu et l’état de différenciation des cellules. Pour leur part, les kératines s’expriment en paire dans les différents épithéliums. Plus précisément, la paire de kératines 8/18 (K8/K18) est présente dans toutes les cellules de l’épithélium simple, avec certaines cellules possédant une seconde paire. En revanche, la paire K8/K18 forme les seuls FIs retrouvés chez les hépatocytes et les cellules d’hépatome, d’où l’intérêt d’utiliser ces deux modèles cellulaires dans des études à visée fonctionnelle. Comme pour tous les autres types de FIs, les FIs K8/K18 contribuent au maintien de l’intégrité des cellules hépatiques. Par ailleurs, l’utilisation de souris transgéniques a permis d’entrevoir un rôle marquant pour ces FIs, en tant que partenaires de plateformes signalétiques chez les cellules épithéliales hépatiques. Le foie exerce un rôle primordial dans la régulation de la glycémie, du fait de sa capacité à stocker et à redistribuer d’importantes quantités de glucose à travers l’organisme, selon les besoins. Cette modulation est finement régulée par l’insuline via l’activation de son récepteur (RI) et de la signalisation qui s’en suit. Des anomalies au niveau de cette régulation conduisent à des maladies métaboliques, particulièrement au niveau du foie. À ce titre, l’accumulation récente de données expérimentales suggère une contribution des FIs K8/K18 dans la modulation du métabolisme du glucose et de la voie RI/PI3K/Akt. Cependant, la relation croisée entre cette paire de FIs, le métabolisme du glucose et cette voie signalétique, de même que les mécanismes moléculaires sous-jacents, demeure énigmatique. Les travaux dévoilés dans cette thèse examinent l’implication des FIs K8/K18 dans la régulation de la voie de signalisation et du trafic vésiculaire du RI chez les cellules hépatiques. L’approche expérimentale s’appuie sur la mise en culture d’hépatocytes ou de cellules d’hépatome dépourvues ou non de FIs K8/K18, en combinaison avec l’utilisation de diverses méthodes biochimiques et d’imagerie cellulaire. Les résultats révèlent pour la première fois, un rôle des FIs K8/K18 dans la signalisation dépendante des phosphoinositides (PIPs) initiée à la membrane plasmique, laquelle se reflète sur l’activation de la voie PI3K/Akt en réponse à l’insuline, et le trafic endosomal du RI via Rab5/EEA1/PI3P, chez des hépatocytes en culture primaire. Par ailleurs, chez les cellules d’hépatome, les résultats montrent une intervention des FIs K8/K18 dans la modulation de la signalisation et du trafic vésiculaire du RI, qui diffère grandement de celle observée chez les hépatocytes. Dans l’ensemble, les résultats démontrent une contribution incontestable des FIs K8/K18 dans la régulation de la voie signalétique de l’insuline chez les cellules hépatiques. / Intermediate filaments (IFs), together with microfilaments (MFs) and microtubules (MTs), form the cytoskeleton. Unlike the few genes that code for actins and tubulins, expressed in all cells in the body, IF proteins are coded by a large number of genes, classified into 6 types, depending on the tissue and cell differentiation status. For their part, keratins are expressed in pairs in the different epithelia. In more specific terms, the keratin pair 8/18 (K8/K18) is present in all simple epithelia, with some cells containing a second pair. In contrast, the K8/K18 pair forms the only IF network found in hepatocytes and hepatoma cells, hence their usefulness as cell models for addressing functional issues. As for all other IF types, K8/K18 IFs contribute to the maintenance of liver cell integrity. In addition, the use of transgenic mice has allowed to foresee a significant role for these IFs, as partners of signaling platforms in hepatic epithelial cells. The liver exerts a key task as regulator of blood glucose level, due to its ability to store and redistribute large amount of glucose throughout the body, as required. This modulation is finely regulated by insulin via the activation of its receptor (IR) and the downstream signaling pathway. Perturbations in this regulation lead to metabolic diseases, particularly in the liver. As such, recent experimental data suggest a contribution of K8/K18 IFs in the modulation of glucose metabolism and IR/PI3K/Akt pathway. However, the interplay between the IF pair, glucose metabolism and the signaling pathway, as well as the underlying molecular mechanisms, remain enigmatic. The work unveiled in this thesis examines the involvement of K8/K18 IFs in the regulation of the IR signaling pathway and vesicular trafficking in liver cells. The experimental approach is based on the use of cultured hepatocytes and hepatoma cells, which may or may not contain K8/K18 IFs, in combination with the use of assorted biochemical and cell imaging assays. The results uncover a role of K8/K18 IFs in the interplay taking place between the phosphoinositide-dependent signaling (PIPs) initiated at the plasma membrane, which reflects itself into the activation of the PI3K/Akt pathway in response to the insulin stimulation of IR, and its endosomal trafficking via Rab5/EEA1/PI3P, in hepatocytes. In comparative terms, the results using hepatoma cells show an intervention of K8/K18 IFs in the modulation of the IR signaling and vesicular trafficking, which differs greatly from the one observed in hepatocytes. Overall, the results demonstrate an indisputable contribution of K8/K18 IFs in the regulation of the insulin signaling pathway in hepatic cells.

Page generated in 0.3625 seconds