Spelling suggestions: "subject:"integer"" "subject:"nteger""
481 |
Wireless Sensor Networks in Smart Cities : The Monitoring of Water Distribution Networks CaseRong, Du January 2016 (has links)
The development of wireless sensor networks (WSNs) is making it possible to monitor our cities. Due to the small size of the sensor nodes, and their capabilities of transmitting data remotely, they can be deployed at locations that are not easy or impossible to access, such as the pipelines of water distribution networks (WDNs), which plays an important role in protecting environment and securing public health. The design of WSNs for WDNs faces major challenges. Generally, WSNs are resource-limited because most of the sensor nodes are battery powered. Thus, their resource allocation has to be carefully controlled. The thesis considers two prominent problems that occur when designing WSNs for WDNs: scheduling the sensing of the nodes of static WSNs, and sensor placement for mobile WSNs. These studies are reported in the thesis from three published or submitted papers. In the first paper, the scheduling of sleep/sensing for each sensor node is considered to maximize the whole WSNs lifetime while guaranteeing a monitoring performance constraint. The problem is transformed into an energy balancing problem, and solved by a dynamic programming based algorithm. It is proved that this algorithm finds one of the optimal solutions for the energy balancing problem. In the second paper, the question of how the energy balancing problem approximates the original scheduling problem is addressed. It is shown that even though these two problems are not equivalent, the gap of them is small enough. Thus, the proposed algorithm for the energy balancing problem can find a good approximation solution for the original scheduling problem. The second part of the thesis considers the use of mobile sensor nodes. Here, the limited resource is the number of available such mobile nodes. To maximize the monitoring coverage in terms of population, an optimization problem for determining the releasing locations for the mobile sensor nodes is formulated. An approximate solution algorithm based on submodular maximization is proposed and its performance is investigated. Beside WDNs, WSN applications for smart cities share a common characteristic: the area to monitor usually has a network structure. Therefore, the studies of this thesis can be potentially generalized for several IoT scenarios. / <p>QC 20160419</p>
|
482 |
Integration of energy management and production planning : Application to steelmaking industryLabrik, Rachid January 2014 (has links)
Steelmaking industry, one of the most electricity-intensive industrial processes, is seeking for new approaches to improve its competitiveness in terms of energy savings by taking advantage of the volatile electricity prices. This fluctuation in the price is mainly caused by the increasing share of renewable energy sources, the liberalization of energy markets and the growing demand of the energy. Therefore, making the production scheduling of steelmaking processes with knowledge about the cost of the energy may lead to significant cost savings in the electricity bills. With this aim in mind, different models are developed in this project in order to improve the existing monolithic models (continuous-time based scheduling) to find an efficient formulation of accounting for electricity consumption and also to expand them with more detailed scheduling of Electric Arc Furnace stage in the production process. The optimization of the energy cost with multiple electricity sources and contracts and the production planning are usually done as stand-alone optimizers due to their complexity, therefore as a new approach in addition to the monolithic model an iterative framework is developed in this work. The idea to integrate the two models in an iterative manner has potential to be useful in the industry due to low effort for reformulation of existing models. The implemented framework uses multiparametric programming together with bilevel programming in order to direct the schedule to find a compromise between the production constraints and goals, and the energy cost. To ensure applicability heuristic approaches are also examined whenever full sized models are not meeting computational performance requirements. The results show that the monolithic model implemented has a considerable advantage in terms of computational time compared to the models in the literature and in some cases, the solution can be obtained in a few minutes instead of hours. In the contrary, the iterative framework shows a bad performance in terms of computational time when dealing with real world instances. For that matter a heuristic approach, which is easy to implement, is investigated based on coordination theory and the results show that it has a potential since it provides solutions close to the optimal solutions in a reasonable amount of time. Multiparametric programming is the main core of the iterative framework developed in this internship and it is not able to give the solutions for real world instances due to computational time limitations. This computational problem is related to the nature of the algorithm behind mixed integer multiparametric programming and its ability to handle the binary variables. Therefore, further work to this project is to develop new approaches to approximate multiparametric technique or develop some heuristics to approximate the mp-MILP solutions.
|
483 |
Optimization of Production Scheduling in the Dairy Industry / Optimering av produktionsscheman i mejeriindustrinAlvfors, Oskar, Björelind, Fredrik January 2015 (has links)
This thesis presents a case study of mathematical production scheduling optimization applied on Arla Foods AB’s production of dairy products. The scheduling was performed as a possible remedy for problems caused by overcrowded finished goods warehouse. Based on the scheduling, conclusions were made on whether the existing two-shift production is sufficient or if an additional night shift should be introduced. In parallel, an empirical and theoretical analysis on the perceived effects of night shift work on employees was conducted. For the optimization, mixed integer programming was used to model the production context through a discrete time scheduling lot-sizing model developed in this thesis. The model developed and implemented on Arla Foods AB contributes to the research field through its feature of relatively low complexity enabling scheduling of extensive production systems when applied in industrial contexts where products may be categorized. The thesis concludes that mathematical production scheduling can solve Arla Foods AB’s production problematics and suggests reallocation of the existing shifts for the purpose of reduced costs and acceptable warehouse levels. This reallocation would incur production during inconvenient hours whereas management remedies reducing negative effects of night shift work are identified. / Denna avhandling innefattar en studie av matematisk optimering av produktionsscheman applicerad på Arla Foods ABs produktion av mejeriprodukter. Schemaläggningen utfördes som en möjlig lösning på produktionsproblematik orsakad av överfyllda färdigvarulager. Utifrån de optimerade produktionsschemana drogs slutsatser kring om dagens produktionsstruktur på två skift är tillräcklig eller om introduktion av ett andra nattskift skulle vara fördelaktig. Parallellt med detta presenteras en empirisk och teoretisk studie kring de produktionsanställdas uppfattning kring effekter av att arbeta nattskift. För optimeringen har heltalsoptimering (eng: mixed integer programming) använts för modellering av produktionen genom en produktionsplaneringsmodell med diskret tidsrepresentation (eng: discrete time scheduling lot-sizing model ) som utvecklas i denna avhandling. Denna model, som även appliceras på Arla Foods ABs produktion, presenteras i detalj och karaktäriseras av låg komplexitet vilket möjliggör schemaoptimering av omfattande produktionssystem givet att produktportföljen kan kategoriseras i produktgrupper med liknande egenskaper ur ett produktionsperspektiv. Avhandlingen fastslår att matematisk optimering av produktionsscheman har potential att lösa produktionsproblematiken på Arla Foods AB och föreslår en reallokering av den nuvarande produktionen för minskade kostnader och utjämnade nivåer i färdigvarulager. Produktionsomläggningen skulle innebära produktion under obekväm arbetstid vilket föranleder en analys av initiativ som har potential att minska de negativa effekterna av nattskiftarbete för de produktionsanställda.
|
484 |
Two Applications of Combinatorial Branch-and-Bound in Complex Networks and TransportationRasti, Saeid January 2020 (has links)
In this dissertation, we show two significant applications of combinatorial branch-and-bound as an exact solution methodology in combinatorial optimization problems. In the first problem, we propose a set of new group centrality metrics and show their performance in estimating protein importance in protein-protein interaction networks. The centrality metrics introduced here are extensions of well-known nodal metrics (degree, betweenness, and closeness) for a set of nodes which is required to induce a specific pattern. The structures investigated range from the ``stricter'' induced stars and cliques, to a ``looser'' definition of a representative structure. We derive the computational complexity for each of the newly proposed metrics. Then, we provide mixed integer programming formulations to solve the problems exactly; due to the computational complexity of the problem and the sheer size of protein-protein interaction networks, using a commercial solver with the formulations is not always a viable option. Hence, we also propose a combinatorial branch-and-bound approach to solve the problems introduced. Finally, we conclude this work with a presentation of the performance of the proposed centrality metrics in identifying essential proteins in helicobacter pylori. In the second problem, we introduce the asymmetric probabilistic minimum-cost Hamiltonian cycle problem (APMCHCP) where arcs and vertices in the graph are possible to fail. APMCHCP has applications in many emerging areas, such as post-disaster recovery, electronic circuit design, and security maintenance of wireless sensor networks. For each vertex, we define a chance-constraint to guarantee that the probability of arriving at the vertex must be greater than or equal to a given threshold. Four mixed-integer programming (MIP) formulations are proposed for modeling the problem, including two direct formulations and two recursive formulations. A combinatorial branch-and-bound (CBB) algorithm is proposed for solving the APMCHCP, where data preprocessing steps, feasibility rules, and approaches of finding upper and lower bounds are developed. In the numerical experiments, the CBB algorithm is compared with formulations on a test-bed of two popular benchmark instance sets. The results show that the proposed CBB algorithm significantly outperforms Gurobi solver in terms of both the size of optimally solved instances and the computing time.
|
485 |
Optimisation of hauling schedules and passing bay locations in underground mines using a time-discrete mathematical modelRyberg, Albin January 2020 (has links)
The ambition of this project is to contribute to the development of optimisation techniques for underground mining. This resulted in a mathematical model to optimise a type of underground transportation system called the ramp. The ramp is a tunnel from the underground mining areas which trucks use to transport material up to the surface. We consider the case where the ramp only fits one truck at a time and it therefore needs passing bays where trucks can meet. We were inspired by an article which optimised the positions of the passing bays and the schedule for the trucks, during a certain time period. We extended that work by proposing a new mathematical model that can handle a more general and complex mine. The result from optimally solving the model gives the positioning of the passing bays and a schedule which completes a number of trips down and up the ramp as quickly as possible. The model can be used both for long-term and short-term planning. The long-term planning regards the positions of the passing bays. The model can therefore be used before the passing bays are constructed to gain insights about where to place them. The short-term planning is about finding an optimal trip schedule given the placement of the passing bays. The model can therefore also be used to provide a haulage schedule for an upcoming time period.
|
486 |
Integer-forcing in multiterminal coding: uplink-downlink duality and source-channel dualityHe, Wenbo 05 November 2016 (has links)
Interference is considered to be a major obstacle to wireless communication. Popular approaches, such as the zero-forcing receiver in MIMO (multiple-input and multiple-output) multiple-access channel (MAC) and zero-forcing (ZF) beamforming in MIMO broadcast channel (BC), eliminate the interference first and decode each codeword separately using a conventional single-user decoder. Recently, a transceiver architecture called integer-forcing (IF) has been proposed in the context of the MIMO Gaussian multiple-access channel to exploit integer-linear combinations of the codewords. Instead of treating other codewords as interference, the integer-forcing approach decodes linear combinations of the codewords from different users and solves for desired codewords. Integer-forcing can closely approach the performance of the optimal joint maximum likelihood decoder. An advanced version called successive integer-forcing can achieve the sum capacity of the MIMO MAC channel. Several extensions of integer-forcing have been developed in various scenarios, such as integer-forcing for the Gaussian MIMO broadcast channel, integer-forcing for Gaussian distributed source coding and integer-forcing interference alignment for the Gaussian interference channel.
This dissertation demonstrates duality relationships for integer-forcing among three different channel models. We explore in detail two distinct duality types in this thesis: uplink-downlink duality and source-channel duality. Uplink-downlink duality is established for integer-forcing between the Gaussian MIMO multiple-access channel and its dual Gaussian MIMO broadcast channel. We show that under a total power constraint, integer-forcing can achieve the same sum rate in both cases. We further develop a dirty-paper integer-forcing scheme for the Gaussian MIMO BC and show an uplink-downlink duality with successive integer-forcing for the Gaussian MIMO MAC. The source-channel duality is established for integer-forcing between the Gaussian MIMO multiple-access channel and its dual Gaussian distributed source coding problem. We extend previous results for integer-forcing source coding to allow for successive cancellation. For integer-forcing without successive cancellation in both channel coding and source coding, we show the rates in two scenarios lie within a constant gap of one another. We further show that there exists a successive cancellation scheme such that both integer-forcing channel coding and integer-forcing source coding achieve the same rate tuple.
|
487 |
Integer-forcing architectures: cloud-radio access networks, time-variation and interference alignmentEl Bakoury, Islam 04 June 2019 (has links)
Next-generation wireless communication systems will need to contend with many active mobile devices, each of which will require a very high data rate. To cope with this growing demand, network deployments are becoming denser, leading to higher interference between active users. Conventional architectures aim to mitigate this interference through careful design of signaling and scheduling protocols. Unfortunately, these methods become less effective as the device density increases. One promising option is to enable cellular basestations (i.e., cell towers) to jointly process their received signals for decoding users’ data packets as well as to jointly encode their data packets to the users. This joint processing architecture is often enabled by a cloud radio access network that links the basestations to a central processing unit via dedicated connections.
One of the main contributions of this thesis is a novel end-to-end communications architecture for cloud radio access networks as well as a detailed comparison to prior approaches, both via theoretical bounds and numerical simulations. Recent work has that the following high-level approach has numerous advantages: each basestation quantizes its observed signal and sends it to the central processing unit for decoding, which in turn generates signals for the basestations to transmit, and sends them quantized versions. This thesis follows an integer-forcing approach that uses the fact that, if codewords are drawn from a linear codebook, then their integer-linear combinations are themselves codewords. Overall, this architecture requires integer-forcing channel coding from the users to the central processing unit and back, which handles interference between the users’ codewords, as well as integer-forcing source coding from the basestations to the central processing unit and back, which handles correlations between the basestations’ analog signals. Prior work on integer-forcing has proposed and analyzed channel coding strategies as well as a source coding strategy for the basestations to the central processing unit, and this thesis proposes a source coding strategy for the other direction. Iterative algorithms are developed to optimize the parameters of the proposed architecture, which involve real-valued beamforming and equalization matrices and integer-valued coefficient matrices in a quadratic objective.
Beyond the cloud radio setting, it is argued that the integer-forcing approach is a promising framework for interference alignment between multiple transmitter-receiver pairs. In this scenario, the goal is to align the interfering data streams so that, from the perspective of each receiver, there seems to be only a signal receiver. Integer-forcing interference alignment accomplishes this objective by having each receiver recover two linear combinations that can then be solved for the desired signal and the sum of the interference. Finally, this thesis investigates the impact of channel coherence on the integer-forcing strategy via numerical simulations.
|
488 |
Modélisation et optimisation des Hoist Scheduling Problems / Modeling and Optimization for Hoist Scheduling ProblemsFeng, Jianguang 24 August 2017 (has links)
Dans cette thèse, nous étudions des Hoist Scheduling Problems (HSP) qui se posent fréquemment dans des lignes automatiques de traitement de surface. Dans ces lignes, des ponts roulants sont utilisés pour transporter les pièces entre les bains. Ainsi, les ponts roulants jouent un rôle essentiel dans la performance de ces lignes ; et un ordonnancement optimal de leurs mouvements est un facteur déterminant pour garantir la qualité des produits et maximiser la productivité. Les lignes que nous étudions comportent un seul pont roulant mais peuvent être des lignes de base ou des lignes étendues (où des bains sont à fonctions et/ou capacités multiples). Nous examinons trois Hoist Scheduling Problems : l’optimisation robuste d’un HSP cyclique, l’ordonnancement dynamique d’une ligne étendue de type job shop et l’ordonnancement cyclique d’une telle ligne.Pour l’optimisation robuste d’un HSP cyclique, nous définissons la robustesse comme la marge dans le temps de déplacement du pont roulant. Nous formulons le problème en programmation linéaire en nombres mixtes à deux objectifs pour optimiser simultanément le temps de cycle et la robustesse. Nous démontrons que le temps de cycle minimal augmente avec la robustesse, et que par conséquent la frontière Pareto est constituée d’une infinité de solutions. Les valeurs minimales et maximales des deux objectifs sont établies. Les résultats expérimentaux à partir de benchmarks et d’instances générées aléatoirement montrent l’efficacité de l’approche proposée.Nous étudions ensuite un problème d’ordonnancement dynamique dans une ligne étendue de type job shop. Nous mettons en évidence une erreur de formulation dans une un modèle existant pour un problème similaire mais sans bains multi-fonctions. Cette erreur peut rendre l’ordonnancement obtenu sous-optimal voire irréalisable. Nous construisons un nouveau modèle qui corrige cette erreur. De plus il est plus compact et s’applique au cas avec des bains à la fois à capacités et à fonctions multiples. Les résultats expérimentaux menés sur des instances avec ou sans bains multi-fonctions montrent que le modèle proposé conduit toujours à une solution optimale et plus efficace que le modèle existant.Nous nous focalisons enfin sur l’ordonnancement cyclique d’une ligne étendue de type job shop avec des bains à fonctions et capacités multiples. Nous construisons un modèle mathématique en formulant les contraintes de capacité du pont roulant, les intervalles des durées opératoires, et les contraintes de capacité des bains. Nous établissons également des contraintes valides. Les expériences réalisées sur des instances générées aléatoirement montrent l’efficacité du modèle proposé. / This thesis studies hoist scheduling problems (HSPs) arising in automated electroplating lines. In such lines, hoists are often used for material handing between tanks. These hoists play a crucial role in the performance of the lines and an optimal schedule of the hoist operations is a key factor in guaranteeing product quality and maximizing productivity. We focus on extended lines (i.e. with multi-function and/or multi-capacity tanks) with a single hoist. This research investigates three hoist scheduling problems: robust optimization for cyclic HSP, dynamic jobshop HSP in extended lines and cyclic jobshop HSP in extended lines.We first study the robust optimization for a cyclic HSP. The robustness of a cyclic hoist schedule is defined in terms of the free slacks in hoist traveling times. A bi-objective mixed-integer linear programming (MILP) model is developed to optimize the cycle time and the robustness simultaneously. It is proved that the optimal cycle time strictly increases with the robustness, thus there is an infinite number of Pareto optimal solutions. We established lower and upper bounds of these two objectives. Computational results on several benchmark instances and randomly generated instances indicate that the proposed approach can effectively solve the problem.We then examine a dynamic jobshop HSP with multifunction and multi-capacity tanks. We demonstrate that an existing model for a similar problem can lead to suboptimality. To deal with this issue, a new MILP model is developed to generate an optimal reschedule. It can handle the case where a multi-function tank is also multi-capacity. Computational results on instances with and without multifunction tanks indicate that the proposed model always yields optimal solutions, and is more compact and effective than the existing one.Finally, we investigate a cyclic jobshop HSP with multifunction and multi-capacity tanks. An MILP model is developed for the problem. The key issue is to formulate the time-window constraints and the tank capacity constraints. We adapt the formulation of time-window constraints for a simpler cyclic HSP to the jobshop case. The tank capacity constraints are handled by dealing with the relationships between hoist moves so that there is always an empty processing slot for new parts. Computational experiments on numerical examples and randomly generated instances indicate that the proposed model can effectively solve the problem.
|
489 |
CPLEX-basierte ProduktionsablaufplanungHerdt, Anika, Scheidig, Marcel, Jentner, Chris, Sand, Guido 27 January 2022 (has links)
Das Ziel dieses Projektes ist, die bestehende tägliche Produktionsablaufplanung in der Handgalvanik bei dem Lohngalvanikbetrieb C. Jentner GmbH mit Hilfe eines mathematischen Modells zu optimie-ren. Hierfür wurde das Flexible-Job-Shop-Modell von Ziaee ([1], S. 91-95) ausgewählt und auf die Gegebenheiten vor Ort angepasst. Es gehört zu den MILP-Problemen (mixed integer linear programming- gemischt ganzzahlige Programmierung). Bei der Verwendung des Modells für die Praxis stellt die Modellgröße, die benötigt wird, um die Vorgänge in der Produktion ausreichend abbilden zu können, ein Problem dar. Diese führt zu langen Lösungszeiten, die für den täglichen Einsatz in der Produktionsablaufplanung ungeeignet sind. Zur Lösung dieses Problems wurde ein problemspezifisches Verfahren basierend auf Aggregations- und Dekompositionstechniken entwickelt. Durch Anwendung dieses Verfahrens kann die Problemgröße für den Solver klein und so die Lösungszeit in einem für die tägliche Produktionsablaufplanung annehmbaren Rahmen gehalten werden.
|
490 |
Integer Programming-based Methods for Computing Minimum Reaction Modifications of Metabolic Networks for Constraint Satisfaction / 代謝ネットワークの最小反応修正による制約充足のための整数計画法を用いた計算手法Lu, Wei 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第19112号 / 情博第558号 / 新制||情||99(附属図書館) / 32063 / 京都大学大学院情報学研究科知能情報学専攻 / (主査)教授 阿久津 達也, 教授 岡部 寿男, 教授 鹿島 久嗣 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
Page generated in 0.0482 seconds