• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 2
  • 1
  • Tagged with
  • 25
  • 25
  • 25
  • 25
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Unsteady hydrodynamic interaction of ships in the proximity of fixed objects

Tan, Wooi Tong. January 1979 (has links)
Thesis: M.S., Massachusetts Institute of Technology, Department of Ocean Engineering, 1979 / Bibliography: leaves 65-66. / Wooi Tong Tan. / M.S. / M.S. Massachusetts Institute of Technology, Department of Ocean Engineering
22

Existência de solução de equações integrais não lineares em escalas temporais sobre espaços de Banach

Martins, Camila Aversa [UNESP] 27 June 2013 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:18Z (GMT). No. of bitstreams: 0 Previous issue date: 2013-06-27Bitstream added on 2014-06-13T19:48:20Z : No. of bitstreams: 1 martins_ca_me_sjrp.pdf: 297081 bytes, checksum: 4a6f13bdad08f9e72c8df07186762615 (MD5) / Neste trabalho estabelecemos condições para a existência e unicidade de solução para equações integrais do tipo Volterra–Stieltjes não linear x(t)+ Z [a,t]T DsK(t,s) f (s,x(s)) = u(t), t E [a,b]T em escalas temporais T, usando a integral de Cauchy–Stieltjes à direita sobre funções regradas a valores em espaços de Banach / In this work we establish conditions for the existence and uniqueness of solution a Volterra– Stieltjes integral nonlinear equations x(t)+ Z [a,t]T DsK(t,s) f (s,x(s)) = u(t), t E [a,b]Tin time scales T, using the right Cauchy–Stieltjes integral on regulated functions with values in Banach spaces
23

Existência de solução de equações integrais não lineares em escalas temporais sobre espaços de Banach /

Martins, Camila Aversa. January 2013 (has links)
Orientador: Luciano Barbanti / Coorientador: Geraldo Nunes Silva / Banca: German Jesus Lozada Cruz / Banca: Márcia Cristina Anderson Braz Federson / Resumo: Neste trabalho estabelecemos condições para a existência e unicidade de solução para equações integrais do tipo Volterra-Stieltjes não linear x(t)+ Z [a,t]T DsK(t,s) f (s,x(s)) = u(t), t E [a,b]T em escalas temporais T, usando a integral de Cauchy-Stieltjes à direita sobre funções regradas a valores em espaços de Banach / Abstract: In this work we establish conditions for the existence and uniqueness of solution a Volterra- Stieltjes integral nonlinear equations x(t)+ Z [a,t]T DsK(t,s) f (s,x(s)) = u(t), t E [a,b]Tin time scales T, using the right Cauchy-Stieltjes integral on regulated functions with values in Banach spaces / Mestre
24

Asymptotics of the Fredholm determinant corresponding to the first bulk critical universality class in random matrix models

Bothner, Thomas Joachim 06 November 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / We study the one-parameter family of determinants $det(I-\gamma K_{PII}),\gamma\in\mathbb{R}$ of an integrable Fredholm operator $K_{PII}$ acting on the interval $(-s,s)$ whose kernel is constructed out of the $\Psi$-function associated with the Hastings-McLeod solution of the second Painlev\'e equation. In case $\gamma=1$, this Fredholm determinant describes the critical behavior of the eigenvalue gap probabilities of a random Hermitian matrix chosen from the Unitary Ensemble in the bulk double scaling limit near a quadratic zero of the limiting mean eigenvalue density. Using the Riemann-Hilbert method, we evaluate the large $s$-asymptotics of $\det(I-\gamma K_)$ for all values of the real parameter $\gamma$.
25

Design optimization of heterogeneous microstructured materials

Emami, Anahita January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Our ability to engineer materials is limited by our capacity to tailor the material’s microstructure morphology and predict resulting properties. The insufficient knowledge on microstructure-property relationship is due to complexity and randomness in all materials at different scales. The objective of this research is to establish a design optimization methodology for microstructured materials. The material design problem is stated as finding the optimum microstructure to maximize the desired performance satisfying material processing constrains. This problem has been solved in this thesis by means of numerical techniques through four main steps: microstructure characterization, model reconstruction, property evaluation, and optimization. Two methods of microstructure characterizations have been investigated along with the advantages and disadvantages of each method. The first microstructure characterization method is a statistical method which utilizes correlation functions to extract the microstructural information. Algorithms for calculating these correlations functions have been developed and optimized based on their computational cost using MATLAB software. The second microstructure characterization method is physical characterization which works based on evaluation of physical features in microstructured domain. These features have been measured by means of MATLAB codes. Three model reconstruction techniques are proposed based on these characterization methods and employed to generate material models for further evaluation. The first reconstructing algorithm uses statistical functions to reconstruct the statistical equivalent model through simulating annealing optimization method. The second algorithm uses cellular automaton concepts to simulate the grain growth utilizing physical descriptors, and the third one generates elliptical inclusions in a material matrix using physical characteristic of microstructure. The finite element method is used to analysis the mechanical behavior of material models. Several material samples with different microstructural characteristics have been generated to model the micro-scale design domain of AZ31 magnesium alloy and magnesium matrix composite with silicon carbide fibers. Then, surrogate models have been created based on these samples to approximate the entire design domain and demonstrate the sensitivity of the desired mechanical property to two independent microstructural features. Finally, the optimum microstructure characteristics of material samples for fracture strength maximization have been obtained.

Page generated in 0.2017 seconds