• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 13
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 55
  • 55
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Non-homogeneous Boundary Value Problems of a Class of Fifth Order Korteweg-de Vries Equation posed on a Finite Interval

Sriskandasingam, Mayuran 04 October 2021 (has links)
No description available.
32

Integrální a supremální operátory na váhových prostorech funkcí / Integral and supremal operators on weighted function spaces

Křepela, Martin January 2017 (has links)
Title: Integral and Supremal Operators on Weighted Function Spaces Author: Martin Křepela Department: Department of Mathematical Analysis Supervisor: prof. RNDr. Luboš Pick, CSc., DSc., Department of Mathematical Analysis Abstract: The common topic of this thesis is boundedness of integral and supre- mal operators between function spaces with weights. The results of this work have the form of characterizations of validity of weighted operator inequalities for appropriate cones of functions. The outcome can be divided into three cate- gories according to the particular type of studied operators and function spaces. The first part involves a convolution operator acting on general weighted Lorentz spaces of types Λ, Γ and S defined in terms of the nonincreasing rear- rangement, Hardy-Littlewood maximal function and the difference of these two, respectively. It is characterized when a convolution-type operator with a fixed kernel is bounded between the aforementioned function spaces. Furthermore, weighted Young-type convolution inequalities are obtained and a certain optima- lity property of involved rearrangement-invariant domain spaces is proved. The additional provided information includes a comparison of the results to the pre- viously known ones and an overview of basic properties of some new function spaces...
33

Groups of Isometries Associated with Automorphisms of the Half - Plane

Bonyo, Job Otieno 11 December 2015 (has links)
The study of integral operators on spaces of analytic functions has been considered for the past few decades. However, most of the studies in this line are based on spaces of analytic functions of the unit disc. For the analytic spaces of the upper half-plane, the literature is still scanty. Most notable is the recent work of Siskakis and Arvanitidis concerning the classical Ces`aro operator on Hardy spaces of the upper half-plane. In this dissertation, we characterize all continuous one-parameter groups of automorphisms of the upper halfplane according to the nature and location of their fixed points into three distinct classes, namely, the scaling, the translation, and the rotation groups. We then introduce the associated groups of weighted composition operators on both Hardy and weighted Bergman spaces of the half-plane. Interestingly, it turns out that these groups of composition operators form three strongly continuous groups of isometries. A detailed analysis of each of these groups of isometries is carried out. Specifically, we determine the spectral properties of the generators of every group, and using both spectral and semigroup theory of Banach spaces, we obtain concrete representations of the resolvents as integral operators on both Hardy and Bergman spaces of the half-plane. For the scaling group, the resulting resolvent operators are exactly the Ces`aro-like operators. The spectral properties of the obtained integral operators is also determined. Finally, we detail the theory of both Szeg¨o and Bergman projections of the half-plane, and use it to determine the duality properties of these spaces. Consequently, we obtain the adjoints of the resolvent operators on the reflexive Hardy and Bergman spaces of the half-plane.
34

O problema de Riemann-Hilbert para campos vetoriais complexos / The Riemann-Hilbert problem for complex vector fields

Campana, Camilo 24 April 2017 (has links)
Este trabalho trata de problemas de contorno definidos no plano. O problema central desta tese é chamado Problema de Riemann-Hilbert, o qual pode ser descrito como segue. Seja L um campo vetorial complexo não singular definido em uma vizinhança do fecho de um aberto simplesmente conexo do plano com fronteira suave. O Problema de Riemann-Hilbert para o campo L consiste em obter uma solução para a equação Lu = F(x, y, u) no aberto em estudo, sendo dada uma função F mensurável. Pede-se também que a solução tenha extensão contínua até a fronteira e que satisfaça lá uma condição adicional; trabalha-se aqui no contexto das funções Hölder contínuas. Foram obtidos resultados para o problema acima no caso em que L pertence a uma classe de campos hipocomplexos. O caso clássico conhecido é quando o campo vetorial é o operador de Cauchy-Riemann, ou, mais geralmente, quando é um campo elítico. / This work deals with boundary problems in the plane. The central problem in this thesis is the so-called Riemann-Hilbert problem, which may be described as follows. Let L be a non-singular complex vector field defined on a neighborhood of the closure of a simply connected open subset of the plane having smooth boundary. The Riemann-Hilbert problem for the vector field L consists in finding a solution to the equation Lu = F(x, y, u) on the open set under study, where the given function F is measurable. It is also required that the solution have a continuous extension up to the boundary and satisfy an additional condition there. Results were obtained for the above problem when L belongs to a class of hypocomplex vector fields. The well-known classical case is the one in which the vector field under study is the Cauchy-Riemann operator, or more generally when it is an elliptic vector field.
35

Operadores integrais gerados por núcleos em multi-escalas / Integral operators generated by multi-scale kernels

Jordão, Thaís 18 February 2009 (has links)
Neste trabalho, inicialmente, apresentamos uma classe de núcleos positivos definidos, os núcleos de Mercer. As funções nesta classe se enquadram na representação de núcleos dada pelo conhecido Teorema de Mercer. Exploramos algumas de suas propriedades convenientes para o contexto do trabalho e construímos seu espaço nativo. Em seguida, tratamos dos núcleos em multiescalas, um caso particular dos núcleos de Mercer. Após estabelecer algumas propriedades interessantes destes núcleos, analisamos o operador integral gerado por um núcleo em multiescalas, no contexto \'L POT.2\' , considerando os seguintes aspectos: limitação, compacidade e positividade do operador, especificidades da imagem do operador e informações sobre seus autovalores e autofunções. Analisamos ainda algumas propriedades do operador integral envolvendo o espaço nativo do núcleo em multiescalas / We study Mercer like kernels, a very special class of positive definite kernels possessing the description given by many results labeled as Mercer\'s Theorem. We explore some of their properties which are needed in the development of this work and construct their native space. In the second half of the work, we consider Mercer kernels defined by a multi-scale procedure. After establishing some of its properties, we analyze integral operators generated by multi-scale kernels, in the \'L POT.2\' context, centering on the following aspects: boundedness, compactness, positiveness, eigenvalues and eigen- functions. We also consider additional properties of the operator, mainly those involving the native space of the multi-scale kernel
36

Decaimento dos autovalores de operadores integrais positivos gerados por núcleos Laplace-Beltrami diferenciáveis / Eigenvalue decay of positive integral operators generated by Laplace-Beltrami differentiable kernels

Castro, Mario Henrique de 08 August 2011 (has links)
Neste trabalho obtemos taxas de decaimento para autovalores e valores singulares de operadores integrais gerados por núcleos de quadrado integrável sobre a esfera unitária em \'R POT. m+1\', m 2, sob hipóteses sobre ambos, certas derivadas do núcleo e o operador integral gerado por tais derivadas. Este tipo de problema é comum na literatura, mas as hipóteses geralmente são definidas via diferenciação usual em \'R POT m+1\'. Aqui, as hipóteses são todas definidas via derivada de Laplace-Beltrami, um conceito genuinamente esférico investigado primeiramente por W. Rudin no começo dos anos 50. As taxas de decaimento apresentadas são ótimas e dependem da dimensão m e da ordem de diferenciabilidade usada para definir as condições de suavidade / In this work we obtain decay rates for singular values and eigenvalues of integral operators generated by square integrable kernels on the unit sphere in \'R m+1\', m 2, under assumptions on both, certain derivatives of the kernel and the integral operators generated by such derivatives. This type of problem is common in the literature but the assumptions are usually defined via standard differentiation in \'R POT. m+1\'. Here, the assumptions are all defined via the Laplace-Beltrami derivative, a concept first investigated by W. Rudin in the early fifties and genuinely spherical in nature. The rates we present are optimal and depend on both, the differentiability order used to define the smoothness conditions and the dimension m
37

Transmitter-receiver system for time average fourier telescopy

Unknown Date (has links)
Time Average Fourier Telescopy (TAFT) has been proposed as a means for obtaining high-resolution, diffraction-limited images over large distances through ground-level horizontal-path atmospheric turbulence. Image data is collected in the spatial-frequency, or Fourier, domain by means of Fourier Telescopy; an inverse two dimensional Fourier transform yields the actual image. TAFT requires active illumination of the distant object by moving interference fringe patterns. Light reflected from the object is collected by a “light-bucket” detector, and the resulting electrical signal is digitized and subjected to a series of signal processing operations, including an all-critical averaging of the amplitude and phase of a number of narrow-band signals. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
38

Local Tb theorems and Hardy type inequalities

Routin, Eddy 06 December 2011 (has links) (PDF)
In this thesis, we study local Tb theorems for singular integral operators in the setting of spaces of homogeneous type. We give a direct proof of the local Tb theorem with L^2 integrability on the pseudo- accretive system. Our argument relies on the Beylkin-Coifman-Rokhlin algorithm applied in adapted Haar wavelet basis and some stopping time results. Motivated by questions of S. Hofmann, we extend it to the case when the integrability conditions are lower than 2, with an additional weak boundedness type hypothesis, which incorporates some Hardy type inequalities. We study the possibility of relaxing the support conditions on the pseudo-accretive system to a slight enlargement of the dyadic cubes. We also give a result in the case when, for practical reasons, hypotheses on the pseudo-accretive system are made on balls rather than dyadic cubes. Finally we study the particular case of perfect dyadic operators for which the proof gets much simpler. Our argument gives us the opportunity to study Hardy type inequalities. The latter are well known in the Euclidean setting, but seem to have been overlooked in spaces of homogeneous type. We prove that they hold without restriction in the dyadic setting. In the more general case of a ball B and its corona 2B\B, they can be obtained from some geometric conditions relative to the distribution of points in the homogeneous space. For example, we prove that some relative layer decay property suffices. We also prove that this property is implied by the monotone geodesic property of Tessera. Finally, we give some explicit examples and counterexamples in the complex plane to illustrate the relationship between the geometry of the homogeneous space and the validity of the Hardy type inequalities.
39

Local spectral asymptotics and heat kernel bounds for Dirac and Laplace operators

Li, Liangpan January 2016 (has links)
In this dissertation we study non-negative self-adjoint Laplace type operators acting on smooth sections of a vector bundle. First, we assume base manifolds are compact, boundaryless, and Riemannian. We start from the Fourier integral operator representation of half-wave operators, continue with spectral zeta functions, heat and resolvent trace asymptotic expansions, and end with the quantitative Wodzicki residue method. In particular, all of the asymptotic coefficients of the microlocalized spectral counting function can be explicitly given and clearly interpreted. With the auxiliary pseudo-differential operators ranging all smooth endomorphisms of the given bundle, we obtain certain asymptotic estimates about the integral kernel of heat operators. As applications, we study spectral asymptotics of Dirac type operators such as characterizing those for which the second coefficient vanishes. Next, we assume vector bundles are trivial and base manifolds are Euclidean domains, and study non-negative self-adjoint extensions of the Laplace operator which acts component-wise on compactly supported smooth functions. Using finite propagation speed estimates for wave equations and explicit Fourier Tauberian theorems obtained by Yuri Safarov, we establish the principle of not feeling the boundary estimates for the heat kernel of these operators. In particular, the implied constants are independent of self-adjoint extensions. As a by-product, we affirmatively answer a question about upper estimate for the Neumann heat kernel. Finally, we study some specific values of the spectral zeta function of two-dimensional Dirichlet Laplacians such as spectral determinant and Casimir energy. For numerical purposes we substantially improve the short-time Dirichlet heat trace asymptotics for polygons. This could be used to measure the spectral determinant and Casimir energy of polygons whenever the first several hundred or one thousand Dirichlet eigenvalues are known with high precision by other means.
40

Decaimento dos autovalores de operadores integrais positivos gerados por núcleos Laplace-Beltrami diferenciáveis / Eigenvalue decay of positive integral operators generated by Laplace-Beltrami differentiable kernels

Mario Henrique de Castro 08 August 2011 (has links)
Neste trabalho obtemos taxas de decaimento para autovalores e valores singulares de operadores integrais gerados por núcleos de quadrado integrável sobre a esfera unitária em \'R POT. m+1\', m 2, sob hipóteses sobre ambos, certas derivadas do núcleo e o operador integral gerado por tais derivadas. Este tipo de problema é comum na literatura, mas as hipóteses geralmente são definidas via diferenciação usual em \'R POT m+1\'. Aqui, as hipóteses são todas definidas via derivada de Laplace-Beltrami, um conceito genuinamente esférico investigado primeiramente por W. Rudin no começo dos anos 50. As taxas de decaimento apresentadas são ótimas e dependem da dimensão m e da ordem de diferenciabilidade usada para definir as condições de suavidade / In this work we obtain decay rates for singular values and eigenvalues of integral operators generated by square integrable kernels on the unit sphere in \'R m+1\', m 2, under assumptions on both, certain derivatives of the kernel and the integral operators generated by such derivatives. This type of problem is common in the literature but the assumptions are usually defined via standard differentiation in \'R POT. m+1\'. Here, the assumptions are all defined via the Laplace-Beltrami derivative, a concept first investigated by W. Rudin in the early fifties and genuinely spherical in nature. The rates we present are optimal and depend on both, the differentiability order used to define the smoothness conditions and the dimension m

Page generated in 0.0872 seconds