Spelling suggestions: "subject:"integral quadratic constraints"" "subject:"ntegral quadratic constraints""
1 |
Synchrotron electron beam controlGayadeen, Sandira January 2014 (has links)
This thesis develops techniques for the design and analysis of controllers to achieve sub-micron accuracy on the position of electron beams for the optimal performance of synchrotrons. The techniques have been applied to Diamond Light Source, the UK's national synchrotron facility. Electron beam motion in synchrotrons is considered as a large-scale, two-dimensional process and by using basis functions, controllable modes of the process are identified which are independent and allow the design to be approached in terms of a family of single-input, single-output transfer functions. This thesis develops techniques for the design and analysis of controllers to achieve sub-micron accuracy on the position of electron beams for the optimal performance of synchrotrons. The techniques have been applied to Diamond Light Source, the UK's national synchrotron facility. Electron beam motion in synchrotrons is considered as a large-scale, two-dimensional process and by using basis functions, controllable modes of the process are identified which are independent and allow the design to be approached in terms of a family of single-input, single-output transfer functions. In this thesis, loop shaping concepts for dynamical systems are applied to the two-dimensional frequency domain to meet closed loop specifications. Spatial uncertainties are modelled by complex Fourier matrices and the closed loop robust stability, in the presence of spatial uncertainties is analysed within an Integral Quadratic Constraint framework. Two extensions to the unconstrained, single-actuator array controller design are considered. The first being anti-windup augmentation to give satisfactory performance when rate limit constraints are imposed on the actuators and the second being a strategy to account for two arrays of actuators with different dynamics. The resulting control schemes offer both stability and performance guarantees within structures that are feasible for online computation in real time.
|
2 |
Robustness analysis with integral quadratic constraints, application to space launchers.Chaudenson, Julien 04 December 2013 (has links) (PDF)
The introduction of analytical techniques along the steps of the development of a space launcher will allow significant reductions in terms of costs and manpower, and will enable, by a more systematical way of tuning and assessing control laws, to get flyable designs much faster. In this scope, IQC based tools already present promising result and show that they may be the most appropriate ones for the robustness analysis of large complex systems. They account for the system structure and allow dealing specifically with each subsystems, it means that we can improve the representation contained in the multipliers easily and reuse the set up to assess the improvements. The flexibility of the method is a huge advantage. We experienced it during two phases. The first was dedicated to the analysis of the three-degree-of-freedom uncertain nonlinear equation of motion of a rigid body. Secondly, we studied the influence of the pulse-width modulator behavior of the attitude control system on the launcher stability. IQC-based stability analysis allowed defining estimations of the stability domain with respect to uncertainties and system parameters. Moreover, the results obtained with IQC can go way beyond stability analysis with performance analysis with description of the particular performance criteria of the field with appropriate multipliers. Later on controller synthesis and merging of IQC method with worst-case search algorithms could extend greatly the frame of use of this analytical tool and give it the influence it deserves.
|
3 |
Robustness analysis with integral quadratic constraints, application to space launchers. / Analyse de robustesse par contraintes intégrales quadratiques, application aux lanceurs spatiauxChaudenson, Julien 04 December 2013 (has links)
Les travaux effectués dans le cadre de cette thèse « Analyse de robustesse par contraintes intégrales quadratiques - Application aux lanceurs spatiaux » ont été menés en collaboration entre le Département Automatique de Supélec, EADS Astrium ST, l’Agence Spatiale Européenne (ESA) et l’université de Stuttgart. Le but était d’adapter et d’utiliser des méthodes analytiques de validation de loi de commande d'un lanceur en phase balistique pour améliorer les résultats obtenus par l’approche probabiliste fondée sur des simulations, technique actuellement majoritaire dans l’industrie. Dans ce cadre, l’utilisation des contraintes intégrales quadratiques (IQC) a permis de caractériser la stabilité et la performance robuste de la loi de commande d’un modèle représentatif du lanceur. Nous avons étudié l’influence de la dynamique non-linéaire des lanceurs sur la stabilité et la performance robuste. Dans ce cadre, nous avons factorisé les équations du mouvement en prenant en compte les incertitudes de la matrice d’inertie ainsi que les couplages gyroscopiques. Le second axe traita de l’influence des actionneurs de type modulateur de largeur impulsions (PWM) sur la stabilité du système par deux études IQC. La conclusion de ces travaux de thèse met l’accent sur l’importance de l’utilisation de méthodes analytiques dans le domaine spatial. Ces méthodes permettent l’obtention de garanties rigoureuses de stabilité et de performance des systèmes. De plus, toutes les méthodes d’analyse possèdent leur extension pour la synthèse de correcteurs robustes. Ainsi on imagine aisément l’immense gain que pourrait produire l’utilisation de ces méthodes pour la synthèse de correcteurs robustes. / The introduction of analytical techniques along the steps of the development of a space launcher will allow significant reductions in terms of costs and manpower, and will enable, by a more systematical way of tuning and assessing control laws, to get flyable designs much faster. In this scope, IQC based tools already present promising result and show that they may be the most appropriate ones for the robustness analysis of large complex systems. They account for the system structure and allow dealing specifically with each subsystems, it means that we can improve the representation contained in the multipliers easily and reuse the set up to assess the improvements. The flexibility of the method is a huge advantage. We experienced it during two phases. The first was dedicated to the analysis of the three-degree-of-freedom uncertain nonlinear equation of motion of a rigid body. Secondly, we studied the influence of the pulse-width modulator behavior of the attitude control system on the launcher stability. IQC-based stability analysis allowed defining estimations of the stability domain with respect to uncertainties and system parameters. Moreover, the results obtained with IQC can go way beyond stability analysis with performance analysis with description of the particular performance criteria of the field with appropriate multipliers. Later on controller synthesis and merging of IQC method with worst-case search algorithms could extend greatly the frame of use of this analytical tool and give it the influence it deserves.
|
4 |
Frequency domain analysis of feedback interconnections of stable systemsMaya Gonzalez, Martin January 2015 (has links)
The study of non-linear input-output maps can be summarized by three concepts: Gain, Positivity and Dissipativity. However, in order to make efficient use of these theorems it is necessary to use loop transformations and weightings, or so called ”multipliers”.The first problem this thesis studies is the feedback interconnection of a Linear Time Invariant system with a memoryless bounded and monotone non-linearity, or so called Absolute Stability problem, for which the test for stability is equivalent to show the existence of a Zames-Falb multiplier. The main advantage of this approach is that Zames–Falb multipliers can be specialized to recover important tools such as Circle criterion and the Popov criterion. Albeit Zames-Falb multipliers are an efficient way of describing non-linearities in frequency domain, the Fourier transform of the multiplier does not preserve the L1 norm. This problem has been addressed by two paradigms: mathematically complex multipliers with exact L1 norm and multipliers with mathematically tractable frequency domain properties but approximate L1 norm. However, this thesis exposes a third factor that leads to conservative results: causality of Zames-Falb multipliers. This thesis exposes the consequences of narrowing the search Zames-Falb multipliers to causal multipliers, and motivated by this argument, introduces an anticausal complementary method for the causal multiplier synthesis in [1].The second subject of this thesis is the feedback interconnection of two bounded systems. The interconnection of two arbitrary systems has been a well understood problem from the point of view of Dissipativity and Passivity. Nonetheless, frequency domain analysis is largely restricted for passive systems by the need of canonically factorizable multipliers, while Dissipativity mostly exploits constant multipliers. This thesis uses IQC to show the stability of the feedback interconnection of two non-linear systems by introducing an equivalent representation of the IQC Theorem, and then studies formally the conditions that the IQC multipliers need. The result of this analysis is then compared with Passivity and Dissipativity by a series of corollaries.
|
5 |
On Integral Quadratic Constraint Theory and Robust Control of Unmanned Aircraft SystemsFry, Jedediah Micah 11 September 2019 (has links)
This dissertation advances tools for the certification of unmanned aircraft system (UAS) flight controllers. We develop two thrusts to this goal: (1) the validation and improvement of an uncertain UAS framework based on integral quadratic constraint (IQC) theory and (2) the development of novel IQC theorems which allow the analysis of uncertain systems having time-varying characteristics.
Pertaining to the first thrust, this work improves and implements an IQC-based robustness analysis framework for UAS. The approach models the UAS using a linear fractional transformation on uncertainties and conducts robustness analysis on the uncertain system via IQC theory. By expressing the set of desired UAS flight paths with an uncertainty, the framework enables analysis of the uncertain UAS flying about any level path whose radius of curvature is bounded. To demonstrate the versatility of this technique, we use IQC analysis to tune trajectory-tracking and path-following controllers designed via H2 or H-infinity synthesis methods. IQC analysis is also used to tune path-following PID controllers. By employing a non-deterministic simulation environment and conducting numerous flight tests, we demonstrate the capability of the framework in predicting loss of control, comparing the robustness of different controllers, and tuning controllers. Finally, this work demonstrates that signal IQCs have an important role in obtaining IQC analysis results which are less conservative and more consistent with observations from flight test data.
With regards to the second thrust, we prove a novel theorem which enables robustness analysis of uncertain systems where the nominal plant and the IQC multiplier are linear time-varying systems and the nominal plant may have a non-zero initial condition. When the nominal plant and the IQC multiplier are eventually periodic, robustness analysis can be accomplished by solving a finite-dimensional semidefinite program. Time-varying IQC multipliers are beneficial in analysis because they provide the possibility of reducing conservatism and are capable of expressing uncertainties that have unique time-domain characteristics. A number of time-varying IQC multipliers are introduced to better describe such uncertainties. The utility of this theorem is demonstrated with various examples, including one which produces bounds on the UAS position after an aggressive Split-S maneuver. / Doctor of Philosophy / This work develops tools to aid in the certification of unmanned aircraft system (UAS) flight controllers. The forthcoming results are founded on robust control theory, which allows the incorporation of a variety of uncertainties in the UAS mathematical model and provides tools to determine how robust the system is to these uncertainties. Such a foundation provides a complementary perspective to that obtained with simulations. Whereas simulation environments provide a probabilistic-type analysis and are oftentimes costly, the following results provide worst-case guarantees—for the allowable disturbances and uncertainties—and require far less computational resources. Here we take two approaches in our development of certification tools for UAS. First we validate and improve on an uncertain UAS framework that relies on integral quadratic constraint (IQC) theory to analyze the robustness of the UAS in the presence of uncertainties and disturbances. Our second approach develops novel IQC theorems that can aid in providing bounds on the UAS state during its flight trajectory. Though the applications in this dissertation are focused on UAS, the theory can be applied to a wide variety of physical and nonphysical problems wherein uncertainties in the mathematical model cannot be avoided.
|
6 |
A piecewise-affine approach to nonlinear performance / Une approche affine par morceaux de la performance non-linéaireWaitman, Sergio 25 July 2018 (has links)
Lorsqu’on fait face à des systèmes non linéaires, les notions classiques de stabilité ne suffisent pas à garantir un comportement approprié vis-à-vis de problématiques telles que le suivi de trajectoires, la synchronisation et la conception d’observateurs. La stabilité incrémentale a été proposée en tant qu’outil permettant de traiter de tels problèmes et de garantir que le système présente des comportements qualitatifs pertinents. Cependant, comme c’est souvent le cas avec les systèmes non linéaires, la complexité de l’analyse conduit les ingénieurs à rechercher des relaxations, ce qui introduit du conservatisme. Dans cette thèse, nous nous intéressons à la stabilité incrémentale d’une classe spécifique de systèmes, à savoir les systèmes affines par morceaux, qui pourraient fournir un outil avantageux pour aborder la stabilité incrémentale de systèmes dynamiques plus génériques.Les systèmes affines par morceaux ont un espace d’états partitionné, et sa dynamique dans chaque région est régie par une équation différentielle affine. Ils peuvent représenter des systèmes contenant des non linéarités affines par morceaux, ainsi que servir comme des approximations de systèmes non linéaires plus génériques. Ce qui est plus important, leur description est relativement proche de celle des systèmes linéaires, ce qui permet d’obtenir des conditions d’analyse exprimées comme des inégalités matricielles linéaires qui peuvent être traités numériquement de façon efficace par des solveurs existants.Dans la première partie de ce document de thèse, nous passons en revue la littérature sur l’analyse des systèmes affines par morceaux en utilisant des techniques de Lyapunov et la dissipativité. Nous proposons ensuite de nouvelles conditions pour l’analyse du gain L2 incrémental et la stabilité asymptotique incrémentale des systèmes affines par morceaux exprimés en tant qu’inégalités matricielles linéaires. Ces conditions sont montrées être moins conservatives que les résultats précédents et sont illustrées par des exemples numériques.Dans la deuxième partie, nous considérons le cas des systèmes affines par morceaux incertains représentés comme l’interconnexion entre un système nominal et un bloc d’incertitude structuré. En utilisant la théorie de la séparation des graphes, nous proposons des conditions qui étendent le cadre des contraintes quadratiques intégrales afin de considérer le cas où le système nominal est affine par morceaux, à la fois dans les cas non incrémental et incrémental. Via la théorie de la dissipativité, ces conditions sont ensuite exprimées en tant qu’inégalités matricielles linéaires.Finalement, la troisième partie de ce document de thèse est consacrée à l’analyse de systèmes non linéaires de Lur’e incertains. Nous développons une nouvelle technique d’approximation permettant de réécrire ces systèmes de façon équivalente comme des systèmes affines par morceaux incertains connectés avec l’erreur d’approximation. L’approche proposée garantit que l’erreur d’approximation est Lipschitz continue avec la garantie d’une borne supérieure prédéterminée sur la constante de Lipschitz. Cela nous permet d’utiliser les techniques susmentionnées pour analyser des classes plus génériques de systèmes non linéaires. / When dealing with nonlinear systems, regular notions of stability are not enough to ensure an appropriate behavior when dealing with problems such as tracking, synchronization and observer design. Incremental stability has been proposed as a tool to deal with such problems and ensure that the system presents relevant qualitative behavior. However, as it is often the case with nonlinear systems, the complexity of the analysis leads engineers to search for relaxations, which introduce conservatism. In this thesis, we focus on the incremental stability of a specific class of systems, namely piecewise-affine systems, which could provide a valuable tool for approaching the incremental stability of more general dynamical systems.Piecewise-affine systems have a partitioned state space, in each region of which the dynamics are governed by an affine differential equation. They can represent systems containing piecewise-affine nonlinearities, as well as serve as approximations of more general nonlinear systems. More importantly, their description is relatively close to that of linear systems, allowing us to obtain analysis conditions expressed as linear matrix inequalities that can be efficiently handled numerically by existing solvers.In the first part of this memoir, we review the literature on the analysis of piecewise-affine systems using Lyapunov and dissipativity techniques. We then propose new conditions for the analysis of incremental L2-gain and incremental asymptotic stability of piecewise-affine systems expressed as linear matrix inequalities. These conditions are shown to be less conservative than previous results and illustrated through numerical examples.In the second part, we consider the case of uncertain piecewise-affine systems represented as the interconnection between a nominal system and a structured uncertainty block. Using graph separation theory, we propose conditions that extend the framework of integral quadratic constraints to consider the case when the nominal system is piecewise affine, both in the non-incremental and incremental cases. Through dissipativity theory, these conditions are then expressed as linear matrix inequalities.Finally, the third part of this memoir is devoted to the analysis of uncertain Lur’e-type nonlinear systems. We develop a new approximation technique allowing to equivalently rewrite such systems as uncertain piecewise-affine systems connected with the approximation error. The proposed approach ensures that the approximation error is Lipschitz continuous with a guaranteed pre-specified upper bound on the Lipschitz constant. This enables us to use the aforementioned techniques to analyze more general classes of nonlinear systems.
|
7 |
Robustness and optimization in anti-windup controlAlli-Oke, Razak Olusegun January 2014 (has links)
This thesis is broadly concerned with online-optimizing anti-windup control. These are control structures that implement some online-optimization routines to compensate for the windup effects in constrained control systems. The first part of this thesis examines a general framework for analyzing robust preservation in anti-windup control systems. This framework - the robust Kalman conjecture - is defined for the robust Lur’e problem. This part of the thesis verifies this conjecture for first-order plants perturbed by various norm-bounded unstructured uncertainties. Integral quadratic constraint theory is exploited to classify the appropriate stability multipliers required for verification in these cases. The remaining part of the thesis focusses on accelerated gradient methods. In particular, tight complexity-certificates can be obtained for the Nesterov gradient method, which makes it attractive for implementation of online-optimizing anti-windup control. This part of the thesis presents a proposed algorithm that extends the classical Nesterov gradient method by using available secant information. Numerical results demonstrating the efficiency of the proposed algorithm are analysed with the aid of performance profiles. As the objective function becomes more ill-conditioned, the proposed algorithm becomes significantly more efficient than the classical Nesterov gradient method. The improved performance bodes well for online-optimization anti-windup control since ill-conditioning is common place in constrained control systems. In addition, this thesis explores another subcategory of accelerated gradient methods known as Barzilai-Borwein gradient methods. Here, two algorithms that modify the Barzilai-Borwein gradient method are proposed. Global convergence of the proposed algorithms for all convex functions is established by using discrete Lyapunov theorems.
|
Page generated in 0.1418 seconds