• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 2
  • Tagged with
  • 14
  • 14
  • 14
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Performance Analysis for WRANs

Zhang, Zhuang-wei 12 February 2009 (has links)
none
2

OFDM Performance on Aeronautical Channnels

Kamirah, Daniel K. 10 1900 (has links)
ITC/USA 2009 Conference Proceedings / The Forty-Fifth Annual International Telemetering Conference and Technical Exhibition / October 26-29, 2009 / Riviera Hotel & Convention Center, Las Vegas, Nevada / This paper provides an introduction to the Orthogonal Frequency Division Multiplexing (OFDM) scheme which has been proposed for future aeronautical telemetry applications. OFDM offers the potential for high data rates on radio channels with multipath such as aeronautical telemetry channels. This paper provides in introduction to OFDM and demonstrates how orthogonality is maintained over multipath channels by the introduction of a guard band and by the inclusion of a cyclic prefix. The simulation of OFDM in multipath is simulated and performance results are presented that show the degradation of this scheme on a multipath channel with and without the guard band and the cyclic prefix.
3

A novel time offset compensation method for channel estimation in cooperative communication networks

Chen, Jau-Hung 20 July 2011 (has links)
In recent years, relay communication has been proved to achieve the transmis-sion diversity order with space-time block coding (STBC). Most research assumedthat the relay nodes are in perfect synchronization. However, in actual, becausethe transmitting time at each relay is different, the signals from different relays received at destination will interfere with each other. Inter-symbol interference (ISI) iscaused. Besides, the time synchronization error will reduce orthogonality of space-time block coding and result in serious performance degrade. This thesis proposes a time delay compensation method by using Fourier transform and Least Square(LS)estimation method. The destination node can utilize the estimated time delay tosynchronize the received signal. Then, the space-time coding will maintain orthogonality at the receiver. Simulation results show that the proposed method caneffectively improve the performance of cooperative networks when imperfect timesynchronization exists.
4

Eye opening monitor for optimized self-adaptation of low-power equalizers in multi-gigabit serial links

Narayanan, Anand January 2013 (has links)
In modern day communication systems, there is a constant demand for increase in transmission rates. This is however limited by the bandwidth limitation of the channel. Inter symbol interference (ISI) imposes a great threat to increasing data rates by degrading the signal quality. Equalizers are used at the receiver to compensate for the losses in the channel and thereby greatly mitigate ISI. Further, an adaptive equalizer is desired which can be used over a channel whose response is unknown or is time-varying. A low power equalizing solution in a moderately attenuated channel is an analog peaking filter which boosts the signal high frequency components. Such conventional continuous time linear equalizers (CTLE) provide a single degree of controllability over the high frequency boost. A more complex CTLE has been designed which has two degrees of freedom by controlling the high frequency boost as well as the range of frequencies over which the boost is applied. This extra degree of controllability over the equalizer response is desired to better adapt to the varying channel response and result in an equalized signal with a wider eye opening. A robust adaptation technique is necessary to tune the equalizer characteristics. Some of the commonly used techniques for adaptation of CTLEs are based on energy comparison criterion in the frequency domain. But the adaptation achieved using these techniques might not be optimal especially for an equalizer with two degrees of controllability. In such cases an eye opening monitor (EOM) could be used which evaluates the actual signal quality in time domain. The EOM gives an estimate on the signal quality by measuring the eye opening of the equalized signal in horizontal and vertical domain. In this thesis work a CTLE with two degrees of freedom with an EOM based adaptation system has been implemented.
5

Self-interference Handling in OFDM Based Wireless Communication Systems

Yücek, Tevfik 14 November 2003 (has links)
Orthogonal Frequency Division Multiplexing (OFDM) is a multi-carrier modulation scheme that provides efficient bandwidth utilization and robustness against time dispersive channels. This thesis deals with self-interference, or the corruption of desired signal by itself, in OFDM systems. Inter-symbol Interference (ISI) and Inter-carrier Interference (ICI) are two types of self-interference in OFDM systems. Cyclic prefix is one method to prevent the ISI which is the interference of the echoes of a transmitted signal with the original transmitted signal. The length of cyclic prefix required to remove ISI depends on the channel conditions, and usually it is chosen according to the worst case channel scenario. Methods to find the required parameters to adapt the length of the cyclic prefix to the instantaneous channel conditions are investigated. Frequency selectivity of the channel is extracted from the instantaneous channel frequency estimates and methods to estimate related parameters, e.g. coherence bandwidth and Root-mean-squared (RMS) delay spread, are given. These parameters can also be used to better utilize the available resources in wireless systems through transmitter and receiver adaptation. Another common self-interference in OFDM systems is the ICI which is the power leakage among different sub-carriers that degrades the performance of both symbol detection and channel estimation. Two new methods are proposed to reduce the effect of ICI in symbol detection and in channel estimation. The first method uses the colored nature of ICI to cancel it in order to decrease the error rate in the detection of transmitted symbols, and the second method reduces the effect of ICI in channel estimation by jointly estimating the channel and frequency offset, a major source of ICI.
6

Performance of MIMO Molecular Communications in Diffusion-Based Channels

Saeed, Musaab January 2017 (has links)
No description available.
7

Optimum Linear Transceiver Design for MIMO Systems : An Oblique Projection Framework

Wu, Chun-Hsien 07 May 2007 (has links)
Previous studies have demonstrated that many existing communication systems can be formulated within a unified multirate filterbank transceiver model. A redundant block transmission system implemented via this unified multirate filterbank transceiver model is usually known as a multiple-input-multiple-output (MIMO) system in literature. This dissertation devises an optimum linear block-based precoder and the corresponding equalizer for MIMO systems over perfect reconstruction (PR) channels by exploiting the proposed oblique projection framework. Particularly, two main criteria of interest in a digital communication link with limited transmission power are investigated, namely, average bit error rate (BER) minimization and mutual information rate maximization. The study framework is developed as follows. For a block-based precoder, a received signal model is formulated for the two redundancy schemes, viz., trailing-zeros (TZ) and cyclic-prefix (CP). By exploiting the property of oblique projection, a cascaded equalizer for block transmission systems (i.e., MIMO systems) is proposed and implemented with a scheme, in which the inter-block interference (IBI) is completely eliminated by the oblique projection and followed by a matrix degree of freedom for inter-symbol interference (ISI) equalization. With the available channel state information at the transmitter side, the matrix for ISI equalization of the cascaded equalizer is utilized to design an optimum linear block-based precoder, such that the BER is minimized (or the mutual information rate is maximized), subject to the ISI-free and the transmission power constraints. Accordingly, the cascaded equalizer with the ISI-free constraint yields a cascaded ZF equalizer. Theoretical derivations and simulation results confirm that the proposed framework not only retains identical BER and information rate performances to previous works for cases with sufficient redundancy, but also allows their results to be extended to the cases of insufficient redundancy.
8

Self-interference handling in OFDM based wireless communication systems [electronic resource] / by Tevfik Yücek.

Yücek, Tevfik. January 2003 (has links)
Title from PDF of title page. / Document formatted into pages; contains 93 pages. / Thesis (M.S.E.E.)--University of South Florida, 2003. / Includes bibliographical references. / Text (Electronic thesis) in PDF format. / ABSTRACT: Orthogonal Frequency Division Multiplexing (OFDM) is a multi-carrier modulation scheme that provides efficient bandwidth utilization and robustness against time dispersive channels. This thesis deals with self-interference, or the corruption of desired signal by itself, in OFDM systems. Inter-symbol Interference (ISI) and Inter-carrier Interference (ICI) are two types of self-interference in OFDM systems. Cyclic prefix is one method to prevent the ISI which is the interference of the echoes of a transmitted signal with the original transmitted signal. The length of cyclic prefix required to remove ISI depends on the channel conditions, and usually it is chosen according to the worst case channel scenario. Methods to find the required parameters to adapt the length of the cyclic prefix to the instantaneous channel conditions are investigated. / ABSTRACT: Frequency selectivity of the channel is extracted from the instantaneous channel frequency estimates and methods to estimate related parameters, e.g. coherence bandwidth and Root-mean-squared (RMS) delay spread, are given. These parameters can also be used to better utilize the available resources in wireless systems through transmitter and receiver adaptation. Another common self-interference in OFDM systems is the ICI which is the power leakage among different sub-carriers that degrades the performance of both symbol detection and channel estimation. Two new methods are proposed to reduce the effect of ICI in symbol detection and in channel estimation. The first method uses the colored nature of ICI to cancel it in order to decrease the error rate in the detection of transmitted symbols, and the second method reduces the effect of ICI in channel estimation by jointly estimating the channel and frequency offset, a major source of ICI. / System requirements: World Wide Web browser and PDF reader. / Mode of access: World Wide Web.
9

Coding for Relay Networks with Parallel Gaussian Channels

Huang, Yu-Chih 03 October 2013 (has links)
A wireless relay network consists of multiple source nodes, multiple destination nodes, and possibly many relay nodes in between to facilitate its transmission. It is clear that the performance of such networks highly depends on information for- warding strategies adopted at the relay nodes. This dissertation studies a particular information forwarding strategy called compute-and-forward. Compute-and-forward is a novel paradigm that tries to incorporate the idea of network coding within the physical layer and hence is often referred to as physical layer network coding. The main idea is to exploit the superposition nature of the wireless medium to directly compute or decode functions of transmitted signals at intermediate relays in a net- work. Thus, the coding performed at the physical layer serves the purpose of error correction as well as permits recovery of functions of transmitted signals. For the bidirectional relaying problem with Gaussian channels, it has been shown by Wilson et al. and Nam et al. that the compute-and-forward paradigm is asymptotically optimal and achieves the capacity region to within 1 bit; however, similar results beyond the memoryless case are still lacking. This is mainly because channels with memory would destroy the lattice structure that is most crucial for the compute-and-forward paradigm. Hence, how to extend compute-and-forward to such channels has been a challenging issue. This motivates this study of the extension of compute-and-forward to channels with memory, such as inter-symbol interference. The bidirectional relaying problem with parallel Gaussian channels is also studied, which is a relevant model for the Gaussian bidirectional channel with inter-symbol interference and that with multiple-input multiple-output channels. Motivated by the recent success of linear finite-field deterministic model, we first investigate the corresponding deterministic parallel bidirectional relay channel and fully characterize its capacity region. Two compute-and-forward schemes are then proposed for the Gaussian model and the capacity region is approximately characterized to within a constant gap. The design of coding schemes for the compute-and-forward paradigm with low decoding complexity is then considered. Based on the separation-based framework proposed previously by Tunali et al., this study proposes a family of constellations that are suitable for the compute-and-forward paradigm. Moreover, by using Chinese remainder theorem, it is shown that the proposed constellations are isomorphic to product fields and therefore can be put into a multilevel coding framework. This study then proposes multilevel coding for the proposed constellations and uses multistage decoding to further reduce decoding complexity.
10

A Low Complexity Cyclic Prefix Reconstruction Scheme for Single-Carrier Systems with Frequency-Domain Equalization

Hwang, Ruei-Ran 25 August 2010 (has links)
The cyclic prefix (CP) is usually adopted in single carrier frequency domain equalization (SC-FDE) system to avoid inter-block interference (IBI) and inter-symbol interference (ISI) in multipath fading channels. In addition, the use of CP also converts the linear convolution between the transmitted signal and the channel into a circular convolution, leading to significant decrease in receiver equalization. However, the use of CP reduces the bandwidth efficiency. Therefore the SC-FDE system without CP is investigated in this thesis. A number of schemes have been proposed to improve the performance of systems without CP, where both IBI and ICI are dramatically increased. Unfortunately, most of the existing schemes have extremely high computational complexity and are difficult to realize. In this thesis, a novel low-complexity CP reconstruction (CPR) scheme is proposed for interference cancellation, where the successive interference cancellation (SIC) and QR decomposition (QRD) are adopted. In addition, the system performance is further improved by using the fact that the interferences of different symbols are not the same. Simulation experiments are conducted to verify the system performance of the proposed scheme. It is shown that the proposed scheme can effectively reduce the interference, while maintain a low computational complexity.

Page generated in 0.1127 seconds