• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 9
  • 9
  • 9
  • 6
  • 6
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inter-Area Oscillation Damping with Power System Stabilizers and Synchronized Phasor Measurements

Snyder, Aaron Francis 10 February 1997 (has links)
Low frequency oscillations are detrimental to the goals of maximum power transfer and optimal power system security. A contemporary solution to this problem is the addition of power system stabilizers to the automatic voltage regulators on the generators in the power system. The damping provided by this additional stabilizer provides the means to reduce the inhibiting effects of the oscillations. This thesis is an investigation of the use of synchronized phasor measurements as input signals for power system stabilizers installed on the generators of a two-area, 4-machine test power system. A remote measurement feedback controller has been designed and placed in the test power system. Synchronized phasor measurements from optimally sited measurement units were shown to improve the damping of low-frequency inter-area oscillations present in the test system when the proposed controller was included in the generator feedback control loop. The benefit of the damping of these oscillations was evident through the ability to increase the tie-line power flowing in the test system once the proposed control scheme was implemented. Time-domain simulations were used to verify the robustness of the proposed control during severe events, such as a short- circuit or sudden large variations of load. / Master of Science
2

Evaluation of Stability Boundaries in Power Systems

Vance, Katelynn Atkins 07 July 2017 (has links)
Power systems are extremely non-linear systems which require substantial modeling and control efforts to run continuously. The movement of the power system in parameter and state space is often not well understood, thus making it difficult or impossible to determine whether the system is nearing instability. This dissertation demonstrates several ways in which the power system stability boundary can be calculated. The power system movements evaluated here address the effects of inter-area oscillations on the system which occur in the seconds to minutes time period. The first uses gain scheduling techniques through creation of a set of linear parameter varying (LPV) systems for many operating points of the non-linear system. In the case presented, load and line reactance are used as parameters. The scheduling variables are the power flows in tie lines of the system due to the useful information they provide about the power system state in addition to being available for measurement. A linear controller is developed for the LPV model using H₂/H∞ with pole placement objectives. When the control is applied to the non-linear system, the proposed algorithm predicts the response of the non-linear system to the control by determining if the current system state is located within the domain of attraction of the equilibrium. If the stability domain contains a convex combination of the two points, the control will aid the system in moving towards the equilibrium. The second contribution of this thesis is through the development and implementation of a pseudo non-linear evaluation of a power system as it moves through state space. A system linearization occurs first to compute a multi-objective state space controller. For each contingency definition, many variations of the power system example are created and assigned to the particular contingency class. The powerflow variations and contingency controls are combined to run sets of time series analysis in which the Lyapunov function is tracked over three time steps. This data is utilized for a classification analysis which identifies and classifies the data by the contingency type. The goal is that whenever a new event occurs on the system, real time data can be fed into the trained tree to provide a control for application to increase system damping. / Ph. D. / The goal of the utility, reliability coordinators, academics, and regulators is to keep the lights on. The contributions presented in this dissertation aims to provide a methodology and algorithm with which that goal can be met. Although the power system requires the balancing of many different components, it can be boiled down to ensuring equilibrium between load served and generation provided. Because the utility goal is to keep the lights on – and thus not change the load of the customers by turning their lights off, the utility only has control over the generation side of this equation. A see-saw can be used to imagine this balance, but it will also require a feedback loop to ensure that generation will increase or decrease as the load changes. Another way to visualize the power system is to imagine a marble at the bottom of a bowl. If the marble is perturbed too much, it will fly out of the bowl and become what is called unstable. However, if the marble is nudged lightly, it will return back to its resting place at the bottom of the ball – which could be considered a stable equilibrium. A possible control for this type of system would tilt the bowl with a feedback signal based on the location or speed of the marble as it moved around the inside of the bowl. By providing a feedback control, the strength with which the marble can be hit can increase beyond if the bowl were to remain stagnant. However, if the marble is hit very hard, it will not matter if there is feedback control, the marble will veer out of the bowl into instability. This example serves as an analogy for the power system where the current operating point of the power system is the marble and the stable areas of operation are represented by the bowl. The feedback control for the work explored here utilizes information about the generator states to feedback to HVDC lines to strengthen the system. The power system modeling and control design involved in this dissertation aims to determine how much the power system can be perturbed before reaching the edge of the “bowl.”
3

Aspects of Wide-Area Damping Control Design using Dominant Path Synchrophasor Signals

Chompoobutrgool, Yuwa January 2015 (has links)
The presence of inter-area oscillations has long affected stability constraints, and therefore, limited the power transfer capacity of interconnected power systems. Adequate damping of these inter-area oscillations is, thus, necessary to secure system operation and ensure system reliability while increasing power transfers. Power system stabilizers (PSS) are the most common devices used to enhance the damping of such oscillations. Many studies have demonstrated that PSSs using remote signals may perform better than using local signals. The advent of phasor measurement units (PMU) makes remote or wide-area signals become available, which enables various important applications. Of particular interest is wide-area damping control (WADC), which aims to utilize remote or wide-area measurements to damp the inter-area oscillations. However, two main challenges in WADC design are (1) feedback controller input signal selection (which PMU signal is best to use?), and (2) latency (which is inherent in the transmission of the measurements) considerations. In response to the first challenge, this thesis proposes a concept called dominant inter-area oscillation path, which serves to pinpoint a set of candidate signals that can be used as the feedback controller inputs by locating the interconnected corridors where the inter-area modal contents are the most observable. Derivation, identification, and use of the dominant inter-area oscillation paths are demonstrated throughout the thesis. Extensive analysis on the relationships between the proposed set of signals and system properties regarding stability and robustness is presented. To tackle the second challenge, the impacts of time delays on the system performance when using the dominant path signals are investigated. To date, several studies have proposed different control design methods using various oscillation dampers to design WADC. Nevertheless, neither a systematic method nor a concept that encompasses fundamental knowledge on power system dynamics has yet been offered. The objective of this thesis is, thus, to propose an analytical framework based on the dominant path concept which is built upon fundamental principles for feedback controller input signal selection in WADC. With this framework, a proper and systematic approach is developed. The proposed method allows to select appropriate signals and use them to effectively mitigate the inter-area oscillations that constrain power transfer capacity and affect system stability. / <p>QC 20150414</p>
4

Robust Control for Inter-area Oscillations

Vance, Katelynn Atkins 03 February 2012 (has links)
In order to reduce the detrimental effects of inter-area oscillations on system stability, it is possible to use Linear Matrix Inequalities (LMIs) to design a multi-objective state feedback. The LMI optimization finds a control law that stabilizes several contingencies simultaneously using a polytopic model of the system. However, the number of cases to be considered is limited by computational complexity which increases the chances of infeasibility. In order to circumvent this problem, this paper presents a method for solving multiple polytopic problems having a common base case. The proposed algorithm determines the necessary polytopic control for a particular contingency and classifies the data as belonging to that polytopic domain. The technique has been tested on an 8-machine, 13 bus, system and has been found to give satisfactory results. / Master of Science
5

Coordinated Control of Inter-area Oscillations using SMA and LMI

Pal, Anamitra 13 March 2012 (has links)
The traditional approach to damp inter-area oscillations is through the installation of Power System Stabilizers (PSSs) which provide damping control action through excitation control systems of the generating units. However, study of recent blackouts has shown that the control action provided by a PSS alone is not sufficient for damping oscillations in modern power systems which operate under stressed conditions. An integrated form of control using remote measurements to coordinate the different control elements present in the system is the need of the hour. One way of implementing such a coordinated control is through the development of a Linear Matrix Inequality (LMI)-based polytopic model of the system that guarantees pole placement for a variety of operating conditions. The size of the polytopic formulation is an issue for application of LMIs to large systems. The use of Selective Modal Analysis (SMA) alleviates this problem by reducing the size of the system. The previous attempts have used a model containing all the and modes, with SMA being used to eliminate all the other states. In practical applications the resulting system was still found to be too large to use in a polytopic model. This thesis presents an algorithm to reduce the size of the system to the relevant modes of oscillations. A 16 machine, 68 bus equivalent model of the New England-New York interconnected power system is used as the test case with DC lines and SVCs acting as the control. The algorithm is then applied to a 127-bus equivalent model of the WECC System. The use of ESDs as a form of control is also demonstrated. The results indicate that the proposed control successfully damps the relevant modes of oscillations without negatively damping the other modes. The control is then transferred to a more detailed 4000+ bus model of the WECC system to realize its performance on real-world systems. / Master of Science
6

Concepts for Power System Small Signal Stability Analysis and Feedback Control Design Considering Synchrophasor Measurements

Chompoobutrgool, Yuwa January 2012 (has links)
In the Nordic power network, the existence of poorly damped low-frequency inter-area oscillations (LFIOs) has long affected stability constraints, and thereby, limited power transfer capacity. Adequate damping of inter-area modes is, thus, necessary to secure system operation and ensure system reliability while increasing power transfers. Power system stabilizers (PSS) is a prevalent means to enhance the damping of such modes. With the advent of phasor measurement units (PMUs), it is expected that wide-area damping control (WADC), that is, PSS control using wide-area measurements obtained from PMUs, would effectively improve damping performance in the Nordic grid, as well as other synchronous interconnected systems. Numerous research has investigated one ``branch'' of the problem, that is, PSS design using various control schemes. Before addressing the issue of controller design, it is important to focus on developing proper understanding of the ``root'' of the problem: system-wide oscillations, their nature, behavior and consequences. This understanding must provide new insight on the use of PMUs for feedback control of LFIOs. The aim of this thesis is, therefore, to lay important concepts necessary for the study of power system small signal stability analysis that considers the availability of synchrophasors as a solid foundation for further development and implementation of ideas and related applications. Particularly in this study, the focus is on the application addressed damping controller design and implementation. After a literature review on the important elements for wide-area damping control (WADC), the thesis continues with classical small signal stability analysis of an equivalent Nordic model; namely, the KTH-NORDIC32 which is used as a test system throughout the thesis. The system's inter-area oscillations are identified and a sensitivity analysis of the network variables directly measured by synchrophasors is evaluated. The concept of network modeshapes, which is used to relate the dynamical behavior of power systems to the features of inter-area modes, is elaborated. Furthermore, this network modeshape concept is used to determine dominant inter-area oscillation paths, the passageways containing the highest content of the inter-area oscillations. The dominant inter-area paths are illustrated with the test system. The degree of persistence of dominant paths in the study system is determined through contingency studies. The properties of the dominant paths are used to construct feedback signals as input to the PSS. Finally, to exemplify the use of the dominant inter-area path concept for damping control, the constructed feedback signals are implemented in a PSS modulating the AVR error signal of a generator on an equivalent two-area model, and compared with that of conventional speed signals.
7

Intelligent control and system aggregation techniques for improving rotor-angle stability of large-scale power systems

Molina, Diogenes 13 January 2014 (has links)
A variety of factors such as increasing electrical energy demand, slow expansion of transmission infrastructures, and electric energy market deregulation, are forcing utilities and system operators to operate power systems closer to their design limits. Operating under stressed regimes can have a detrimental effect on the rotor-angle stability of the system. This stability reduction is often reflected by the emergence or worsening of poorly damped low-frequency electromechanical oscillations. Without appropriate measures these can lead to costly blackouts. To guarantee system security, operators are sometimes forced to limit power transfers that are economically beneficial but that can result in poorly damped oscillations. Controllers that damp these oscillations can improve system reliability by preventing blackouts and provide long term economic gains by enabling more extensive utilization of the transmission infrastructure. Previous research in the use of artificial neural network-based intelligent controllers for power system damping control has shown promise when tested in small power system models. However, these controllers do not scale-up well enough to be deployed in realistically-sized power systems. The work in this dissertation focuses on improving the scalability of intelligent power system stabilizing controls so that they can significantly improve the rotor-angle stability of large-scale power systems. A framework for designing effective and robust intelligent controllers capable of scaling-up to large scale power systems is proposed. Extensive simulation results on a large-scale power system simulation model demonstrate the rotor-angle stability improvements attained by controllers designed using this framework.
8

Identification of Damping Contribution from Power System Controllers

Banejad, Mahdi January 2004 (has links)
With the growth of power system interconnections, the economic drivers encourage the electric companies to load the transmission lines near their limits, therefore it is critical to know those limits well. One important limiting issue is the damping of inter-area oscillation (IAO) between groups of synchronous machines. In this Ph.D. thesis, the contribution of power system components such as load and static var compensators (SVC) that affect the IAO of the power system, are analysed. The original contributions of this thesis are as follows: 1-Identification of eigenvalues and mode shapes of the IAO: In the first contribution of this thesis, the eigenvalues of the IAO are identified using a correlation based method. Then, the mode shape at each identified resonant frequency is determined to show how the synchronous generators swing against each other at the specific resonant frequencies. 2-Load modelling and load contribution to damping: The first part of this contribution lies in identification of the load model using cross-correlation and autocorrelation functions . The second aspect is the quantification of the load contribution to damping and sensitivity of system eigenvalues with respect to the load. 3- SVC contribution to damping: In this contribution the criteria for SVC controller redesign based on complete testing is developed. Then the effect of the SVC reactive power on the measured power is investigated. All of the contributions of this thesis are validated by simulation on test systems. In addition, there are some specific application of the developed methods to real data to find a.) the mode shape of the Australian electricity network, b.) the contribution of the Brisbane feeder load to damping and c.) the effect of the SVC reactive power of the Blackwall substations on the active power supplying Brisbane.
9

Supervisory control scheme for FACTS and HVDC based damping of inter-area power oscillations in hybrid AC-DC power systems

Hadjikypris, Melios January 2016 (has links)
Modern interconnected power systems are becoming highly complex and sophisticated, while increasing energy penetrations through congested inter-tie lines causing the operating point approaching stability margins. This as a result, exposes the overall system to potential low frequency power oscillation phenomena following disturbances. This in turn can lead to cascading events and blackouts. Recent approaches to counteract this phenomenon are based on utilization of wide area monitoring systems (WAMS) and power electronics based devices, such as flexible AC transmission systems (FACTS) and HVDC links for advanced power oscillation damping provision. The rise of hybrid AC-DC power systems is therefore sought as a viable solution in overcoming this challenge and securing wide-area stability. If multiple FACTS devices and HVDC links are integrated in a scheme with no supervising control actions considered amongst them, the overall system response might not be optimal. Each device might attempt to individually damp power oscillations ignoring the control status of the rest. This introduces an increasing chance of destabilizing interactions taking place between them, leading to under-utilized performance, increased costs and system wide-area stability deterioration. This research investigates the development of a novel supervisory control scheme that optimally coordinates a parallel operation of multiple FACTS devices and an HVDC link distributed across a power system. The control system is based on Linear Quadratic Gaussian (LQG) modern optimal control theory. The proposed new control scheme provides coordinating control signals to WAMS based FACTS devices and HVDC link, to optimally and coherently counteract inter-area modes of low frequency power oscillations inherent in the system. The thesis makes a thorough review of the existing and well-established improved stability practises a power system benefits from through the implementation of a single FACTS device or HVDC link, and compares the case –and hence raises the issue–when all active components are integrated simultaneously and uncoordinatedly. System identification approaches are also in the core of this research, serving as means of reaching a linear state space model representative of the non-linear power system, which is a pre-requisite for LQG control design methodology.

Page generated in 0.09 seconds