Spelling suggestions: "subject:"intercluster"" "subject:"alterscluster""
1 |
A Cluster-based TDMA System for Inter-Vehicle Communications on VANETLin, Yu-Hung 27 August 2010 (has links)
In this Thesis, we propose a Cluster-based TDMA (CBT) scheme for Vehicular Ad-hoc Networks (VANET). In the CBT, the collision problems can be solved when packets are transmitted at the same time.
In the Intra-cluster communications, the VANET Coordinator (VC) is determined by randomly choosing a number of zero or one. Other VANET Nodes (VNs) then randomly select different time slots to transmit their Bandwidth Requests (BRs). If more than two VNs choose the same slots for BRs, collision will occur. The failed VNs will continue to issue BRs in the next TDMA frames. After the time slots are scheduled by VC, all VNs can use the designated time slots to send data. In the Inter-cluster communications, when two clusters are approaching to each other, two VCs must exchange Slot Allocation MAP (SAM) using the random zero-or-one scheme. The VCs successfully receive SAM must reschedule the time slots.
For the purpose of performance evaluation, we calculate the average time slots of selecting VC and the average time slots required for successful BRs. We also compute the average time slots required for successfully transmitting SAM and the average time slots required for broadcasting SAM to all VNs. Finally, we calculate the average time slots required for waiting before data transmission. To validate the mathematical results, we perform a simulation written in C++. When comparing the mathematical results to the simulation results, we observe that in the average time slots required for BR, the former is larger than the latter. This is because in the mathematical equations it is difficult to specify which time slots are used by VNs to transmit BRs. However, the rest of performance comparisons, the two results are very close.
|
2 |
Integrated Scheduling For Clustered VLIW ProcessorsNagpal, Rahul 12 1900 (has links)
Clustered architecture processors are preferred for embedded systems because centralized register file architectures scale poorly in terms of clock rate, chip area, and power consumption. Scheduling for clustered architectures involves spatial concerns (where to schedule) as well as temporal concerns (when to schedule). Various clustered VLIW configurations, connectivity types, and inter-cluster communication models present different performance trade-offs to a scheduler. The scheduler is responsible for resolving the conflicting requirements of exploiting the parallelism offered by the hardware and limiting the communication among clusters to achieve better performance.
Earlier proposals for cluster scheduling fall into two main categories, viz., phase-decoupled scheduling and phase-coupled scheduling and they focus on clustered architectures which provide inter-cluster communication by an explicit inter-cluster copy operation. However, modern commercial clustered architectures provide snooping capabilities (apart from the support for inter-cluster communication using an explicit MV operation) by allowing some of the functional units to read operands from the register file of some of the other clusters without any extra delay. The phase-decoupled approach of scheduling suffers from the well known phase-ordering problem which becomes severe for such a machine model (with snooping) because communication and resource constraints are tightly coupled and thus are exposed only during scheduling. Tight integration of communication and resource constraints further requires taking into account the resource and communication requirements of other instructions ready to be scheduled in the current cycle while binding an instruction, in order to carry out effective binding. However, earlier proposals on integrated scheduling consider instructions and clusters for binding using a fixed order and thus they show different widely varying performance characteristics in terms of execution time and code size. Other shortcomings of earlier integrated algorithms (that lead to suboptimal cluster scheduling decisions) are due to non-consideration of future communication (that may arise due to a binding) and functional unit binding.
In this thesis, we propose a pragmatic scheme and also a generic graph matching based framework for cluster scheduling based on a generic and realistic clustered machine model. The proposed scheme effectively utilizes the exact knowledge of available communication slots, functional units, and load on different clusters as well as future resource and communication requirements known only at schedule time to attain significant performance improvement without code size penalty over earlier algorithms. The proposed graph matching based framework for cluster scheduling resolves the phase-ordering and fixed-ordering problem associated with scheduling on clustered VLIW architectures. The framework provides a mechanism to exploit the slack of instructions
by dynamically varying the freedom available in scheduling an instruction and hence the cost of scheduling an instruction using different alternatives to reduce the inter-cluster communication. An experimental evaluation of the proposed framework and some of the earlier proposals is presented in the context of a state-of-art commercial clustered architecture.
|
3 |
APPLICATION OF PEER TO PEER TECHNOLOGY IN VEHICULAR COMMUNICATION.Shameerpet, Tanuja 01 June 2021 (has links)
The primary goal of this thesis is to implement peer to peer technology in vehicular communication. The emerging concept of Vehicular Communication including road side infrastructure is a promising solution to avoid accidents and providing live traffic data. There is a high demand for the technologies which ensure low latency communication. Modern vehicles equipped with computing, communication and storage and sensing capabilities eased the transmission of data. To achieve deterministic bounds on data delivery, ability to be established anywhere quickly, and efficiency of data query we have chosen to implement a structured peer to peer overlay model in a cluster of vehicles. The vehicles in the cluster exchange information with the cluster head. The cluster head acts as a leader of the cluster, it fetches the data from the Road-side unit and other cluster heads. We have implemented Pyramid Tree Model in structured peer to peer models. A pyramid tree is group of clusters organized in a structured format with the data links between the clusters. The core concepts behind the pyramid tree model is clustering the nodes based on interest.
|
4 |
Network, clusters and innovations : 3 essays / Réseaux, clusters et innovations : 3 essaisBehfar, Stefan kambiz 03 April 2017 (has links)
[...] Mes travaux portent sur les clusters structurant le réseau et l'innovation car 1) le cluster impacte collectivement plutôt qu’individuellement la sortie du réseau, 2) les couplages intra et inter-cluster représentent la structure même des clusters mais ils influencent différemment l'innovation ou la croissance du cluster, 3) un certain compromis reste à définir entre la structure dense et éparse des différents réseaux. Un cluster est de façon générale défini comme un groupe de choses similaires ou de personnes qui travaillent sur des sujets analogues. Selon le domaine auquel il s’applique, même si l’idée reste la même, la définition s’affine. En sciences des organisations, un cluster représente un regroupement d’entreprises et d’institutions qui interagissent entre-elles par le biais de contrats, d’opérations formelles ou informelles et de réunions occasionnelles afin de contribuer collectivement à un résultat innovant. [...] La thèse est structurée comme suit. Dans l'introduction générale, nous passons en revue la littérature des connaissances existantes qui sert de base pour le cadre conceptuel des documents. Nous définissons ensuite certains concepts utilisés dans les trois articles présentés tels que la structure de réseau complexe (utilisée dans le premier article), l'innovation et les liens de réseau (utilisés principalement dans le deuxième article), et la gestion des connaissances utilisées (dans le troisième article). Dans le premier article, nous discutons les différents mécanismes de formation de liens dictés par les réseaux dirigés permettant de distinguer la distribution des degrés. Dans le deuxième article, nous abordons l'impact de la dynamique de groupe sur l'innovation du groupe de projet OSS. Dans le troisième article, nous nous attachons à l'impact du transfert des connaissances à l'intérieur des groupes sur le transfert des connaissances entre les groupes. L'annexe A permettra de discuter la modélisation analytique de la croissance des réseaux sociaux en utilisant la projection de réseaux multicouches ; l'annexe B sera l’occasion de présenter statistiquement le lien entre les relations intragroupe et les relations intergroupe. / [...] However, there is a gap in the literature with regard to the analysis of cluster or group structure as an input and cluster or group innovation as an output, e.g. “impact of network cluster structure on cluster innovation and growth”, i.e. how intra- and inter-cluster coupling, structural holes and tie strength impact cluster innovation and growth; and how intra-cluster density affects inter-cluster coupling; that I address in my thesis.Therefore, I focus on the cluster (or group of individuals) rather than the individual to analyze both network structure and innovation, because 1) clusters represent collective impact on network output rather than individuals’ impact, 2) intra and inter cluster couplings both represent cluster structure but have different impacts on cluster innovation and growth, 3) trade-offs among dense and sparse network cluster structures are different from those associated with networks of individuals. [...] The thesis is structured as follows. In the general introduction, I review the literature of existing knowledge in the field, which serves as a basis for the conceptual framework for the papers. I then define certain concepts used in the papers, such as complex network structure used in the first paper, innovation and network ties mainly used in the second paper, and knowledge management used in the third paper. In the first paper I discuss directed networks’ different link formation mechanisms causing degree distribution distinction. In the second paper, I discuss the impact of group dynamics on OSS project group innovation. In the third paper, I discuss impact of knowledge transfer inside groups onto knowledge transfer between groups. In appendix A, I discuss analytical modeling of social network growth using multilayer network projection; and in appendix B, I discuss statistically how intragroup ties and intergroup ties are related.
|
5 |
The design of physical and logical topologies for wide-area WDM optical networksGazendam, Albert Dirk 29 March 2004 (has links)
The objective of this dissertation is to investigate the factors that influence the design of wide-area wavelength division multiplexing (WDM) optical networks. Wide-area networks are presented as communication networks capable of transporting voice and data communication over large geographical areas. These networks typically span a whole country, region or even continent.The rapid development and maturation of WDM technology over the last decade have been well-received commercially and warrants the development of skills in the field of optical network design.The fundamental purpose of all communication networks and technologies is to satisfy the demand of end-users through the provisioning of capacity over shared and limited physical infrastructure. Consideration of the business aspects related to communications traffic and the grooming thereof are crucial to developing an understanding of customer requirements in terms of the selection and quality of services and applications. Extensive communication networks require complex management techniques that aim to ensure high levels of reliability and revenue generation.An integrated methodology is presented for the design of wide-area WDM optical networks. The methodology harnesses physical, logical, and virtual topologies together with routing and channel assignment (RCA) and clustering processes to enhance objectivity of the design process. A novel approach, based on statistical clustering using the Ward linkage as similarity metric, is introduced for solving the problem of determining the number and positions of the backbone nodes of a wide-area network, otherwise defined as the top level hub nodes of the multi-level network model. The influence of the geographic distribution of network traffic, and the intra/inter-cluster traffic ratios are taken into consideration through utilisation of modified gravity models and novel network node weighting. / Dissertation (MEng)--University of Pretoria, 2005. / Electrical, Electronic and Computer Engineering / unrestricted
|
Page generated in 0.07 seconds