• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

TrIP - Transformer Interatomic Potential Predicts Realistic Energy Surface Using Physical Bias

Hedelius, Bryce Eric 25 April 2024 (has links) (PDF)
Accurate interatomic energies and forces enable high-quality molecular dynamics simulations, torsion scans, potential energy surface mapping, and geometry optimization. Machine learning algorithms have enabled rapid estimates of energies and forces with high accuracy. Further development of machine learning algorithms holds promise for producing general potentials that support dozens of atomic species. I present my own Transformer Interatomic Potential (TrIP): a chemically sound potential based on the SE(3)-Transformer. TrIP's species-agnostic architecture--using continuous atomic representation and homogenous graph convolutions--encourages parameter sharing between atomic species for more general representations of chemical environments, keeps a reasonable number of parameters, serves as a form of regularization, and is a step towards accurate universal interatomic potentials. I introduce physical bias in the form of Ziegler-Biersack-Littmark-screened nuclear repulsion and constrained atomization energies to improve qualitative behavior for near and far interaction. TrIP achieves state-of-the-art accuracies on the COMP6 benchmark with an energy prediction error of just 1.02 kcal/mol MAE, outperforming all other models. An energy scan of a water molecule shows improved short- and long-range interactions compared to other neural network potentials, demonstrating its physical realism compared to other models. TrIP also shows stability in molecular dynamics simulations with a reasonable exploration of Ramachandran space.
2

Application of machine learning potential to predict grain boundary properties and development of its performant implementation / 機械学習原子間ポテンシャルの結晶粒界構造探索への応用と高速化手法開発

Nishiyama, Takayuki 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23899号 / 工博第4986号 / 新制||工||1778(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 田中 功, 教授 中村 裕之, 教授 奥田 浩司 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
3

Atomic scale simulations of noble gases behaviour in uranium dioxide / Simulations à l'échelle atomique du comportement des gaz nobles dans le dioxyde d'uranium

Govers, Kevin K. 27 June 2008 (has links)
Nuclear fuel performance is highly affected by the behaviour of fission gases, particularly at elevated burnups, where large amounts of gas are produced and can potentially be released. The importance of fission gas release was the motivation for large efforts, both experimentally and theoretically, in order to increase our understanding of the different steps of the process, and to continuously improve our models. Extensions to higher burnups, together with the growing interest in novel types of fuels such as inert matrix fuels envisaged for the transmutation of minor actinides, make that one is still looking for a permanently better modelling, based on a physical understanding and description of all stages of the release mechanism. Computer simulations are nowadays envisaged in order to provide a better description and understanding of atomic-scale processes such as diffusion, but even in order to gain insight on specific processes that are inaccessible by experimental means, such as the fuel behaviour during thermal spikes. In the present work simulation techniques based on empirical potentials have been used, focusing in a first stage on pure uranium dioxide. The behaviour of point defects was at the core of this part, but also the estimation of elastic and melting properties. Then, in a second stage, the study has been extended to the behaviour of helium and xenon. For helium, the diffusion in different domains of stoichiometry was considered. The simulations enabled to determine the diffusion coefficient and the migration mechanism, using both molecular dynamics and static calculation techniques. Xenon behaviour has been investigated with the additional intention to model the behaviour of small intragranular bubbles, particularly their interaction with thermal spikes accompanying the recoil of fission fragments. For that purpose, a simplified description of these events has been proposed, which opens perspectives for further work. / Les performances du combustible nucléaire sont fortement affectées par le comportement des gaz de fission, et ce particulièrement lorsqu’un taux d’épuisement élevé est atteint, puisque d’importantes quantités de gaz sont alors produites et peuvent potentiellement être relâchées. Les enjeux, entre autre économiques, liés au relâchement de gaz de fission ont donné lieu à d’importants efforts, tant sur le plan expérimental que théorique, afin d’accroître notre compréhension des différentes étapes du processus, et d’améliorer sans cesse les mod`eles. Les extensions à des taux d’épuisements encore plus élevés ainsi que l’intérêt croissant pour de nouveaux types de combustible tels que les matrices inertes, envisages en vue de la transmutation des actinides mineures, font qu’à l’heure actuelle, le besoin permanent d’une meilleure modélisation, basée sur une compréhension et une description physique des différentes étapes du processus de relâchement de gaz de fission, est toujours de mise. Les simulations par ordinateur ont ainsi été considérée comme un nouvel angle de recherche sur les processus élémentaires se produisant à l’échelle atomique, à la fois afin d’obtenir une meilleure compréhension de processus tels que la diffusion atomique ; mais aussi afin d’avoir accès à certains processus qui ne sont pas observables par des voies expérimentales, tels que la le comportement du combustible lors de pointes thermiques. Dans ce travail, deux techniques, basées sur l’utilisation de potentiels interatomiques empiriques, ont permis d’étudier le dioxyde d’uranium, dans un premier temps en l’absence d’impuretés. Cette partie était principalement centrée sur le comportement des défauts ponctuels, mais a aussi concerné différentes propriétés élastiques, ainsi que le processus de fusion du composé. Ensuite l’étude a été étendue aux comportements de l’hélium de du xénon. Pour ce qui a trait à l’hélium, la diffusion dans différents domaines de stoechiométrie a été considérée. Les simulations ont permis de déterminer le coefficient de diffusion ainsi que le mécanisme de migration lui-même. Quant au xénon, outre les propriétés de diffusion, l’intention fut de se diriger vers la modélisation des petites bulles intragranulaires, et plus précisément vers leur interaction avec les pointes thermiques, créées lors du recul des fragments de fission. Une description simplifiée de ce processus a été proposée, qui offre de nouvelles perspectives dans ce domaine.
4

Applications of Slattery - Lagoudas' theory for the stress deformation behavior

Tian, Yongzhe 30 October 2006 (has links)
The thermodynamics of three-dimensional, single-component elastic crystalline solids was developed by Slattery and Lagoudas (2005). Considering the in¯nitesimal deformations, the stress can be expressed as a function of the lattice vectors and density in the reference configuration and ¹(I;mn), which is defined as the derivative of specific Helmoholtz free energy with respect to the I(mn). Using the Cauchy - Born rule to connect the interatomic potential energy and the specific Helmholtz free energy, it is possible to calculate the elastic properties of both nano-scale materials such as carbon nanotubes and macro-scale materials such as diamond and silicon. In this study, we used Terso® (1988a) - Brenner (1990b) Potential, Terso® (1988b) potential and Finnis and Sinclair (1984) potential for carbon, silicon, and vanadium systems respectively. Using the interatomic potentials to describe the specific Helmholtz free energy, the elastic properties of graphite, diamond, silicon and vanadium were calculated. This method was also extended to the calculation of Young's modulus of single-walled carbon nanotubes (SWCNTs), which are composed of a two dimensional array of carbon atoms. For SWCNT, we get good agreement with the available experimental data. For diamond and silicon, C11 and C12 were consistent with both the superelastic model and the experimental data. The difference of C44 between the calculation and experimental data was due to accuracy of the potential functions.
5

Construction of interatomic potentials using large sets of DFT calculations and linear regression method / 網羅的第一原理計算と線形回帰を用いた原子間ポテンシャルの構築

Takahashi, Akira 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20369号 / 工博第4306号 / 新制||工||1667(附属図書館) / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 田中 功, 教授 酒井 明, 教授 中村 裕之 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
6

Investigation of Structure-Property Relationships in Materials Using Ab-Initio and Semi-Empirical Methods

Liyanage, Laalitha S I 11 May 2013 (has links)
Structure-property relationships of two crystal structures were investigated using computational methodologies in two different length scales:electronic and atomistic length scales. Electronic structure calculations were performed using density functional theory (DFT) with generalized gradient approximation (GGA), GGA+U (U is “on-site” electronelectron repulsion) and hybrid functional forms. Atomistic calculations were performed utilizing the semi-empirical interatomic formulation, Modified Embedded Atom Method (MEAM). Classical molecular dynamics simulations were performed on the atomistic length scale in order to investigate thermal properties. In the first study, structural, elastic and thermal properties of cementite (Fe3C) were investigated using a Modified Embedded Atom Method (MEAM) potential for iron-carbon (Fe-C) alloys. Previously developed Fe and C single element potentials were used to develop a Fe-C alloy MEAM potential, using a statistically-based optimization scheme to reproduce structural and elastic properties of cementite, the interstitial energies of C in bcc Fe as well as heat of formation of Fe-C alloys in L12 and B1 structures. The stability of cementite at high temperatures was investigated by molecular dynamics simulations. The nine single crystal elastic constants for cementite were obtained by computing total energies for strained cells. Polycrystalline elastic moduli for cementite were calculated from the single crystal elastic constants of cementite. The formation energies of (001), (010), and (100) surfaces of cementite were also calculated. The melting temperature and the variation of both the specific heat and volume with respect to temperature were investigated by performing a two-phase (solid/liquid) molecular dynamics simulation of cementite. The predictions of the potential are in good agreement with first-principles calculations and experiments. In the second study the site occupancy and magnetic properties of Zn-Sn substituted M-type Sr-hexaferrite (SrFe12-x(Zn0.5Sn0.5)xO19 with x = 1) were investigated using firstprinciples total-energy calculations. We find that in the ground-state configuration Zn-Sn ions preferentially occupy 4f1 and 4f2 sites unlike the model previously suggested by Ghasemi et al. where Zn-Sn ions occupy 2b and 4f2 sites. Our model predicts a rapid increase in saturation magnetic moment (Ms) as well as decrease in magnetic anisotropy compared to the pure M-type Sr-hexaferrite, which is consistent with experimental observations.
7

Molecular dynamics of high temperature hydrogen attack

Bodden Connor, Mike Travis 09 December 2022 (has links) (PDF)
High temperature hydrogen attack (HTHA) is a damage mechanism that only affects carbon steel and low alloy material. Most of the data regarding HTHA are experimental-driven. Even though this approach has been successful, there are still much more things that the oil and gas industry does not understand about HTHA. The regions that were considered safe (below the Nelson curves) have experienced catastrophic failure. Our research consists of performing Molecular Dynamics (MD) and the Nudge Elastic Band (NEB) calculation of HTHA to better understand the atomistic behavior of this damage mechanism.
8

Bringing Newton and Bernoulli Into the Quantum World: Applying Classical Physics to the Modeling of Quantum Behavior in Transition Metal Alloys

Weiss, Elan J. January 2022 (has links)
No description available.
9

Modélisation atomistique de la précipitation des hydrures de zirconium : Méthodologie de developpement d'un potentiel en liaisons fortes / Atomistic modeling of zirconium hydride precipitation : methodology for deriving a tight-binding potential

Dufresne, Alice 18 December 2014 (has links)
Le système zirconium-hydrogène est très étudié dans le cadre de la sûreté nucléaire car la précipitation d'hydrures entraîne la fragilisation des gainages, à base d'alliage de zirconium. Il s'agit de la première barrière de confinement des produits radioactifs : son intégrité doit être maintenue tout au long de la vie des assemblages combustible, en centrale y compris en cas d'accident et post-centrale (transport et entreposage). De nombreuses incertitudes demeurent quant aux cinétiques de précipitation des hydrures et à l'impact des contraintes sur leur précipitation. La modélisation à l'échelle atomique de ce système permettrait d'apporter des clarifications sur les mécanismes en jeu. Les méthodes traditionnelles de modélisation atomistique sont basées sur des approches thermostatistiques, dont la précision et la fiabilité dépendent du potentiel interatomique qui les alimente. Or il n'existe pas de potentiel rendant possible une étude rigoureuse du système Zr-H. Cette thèse a permis de développer cet outil manquant en utilisant l'approximation des liaisons fortes. Au-delà de ce nouveau potentiel, ce travail donne un guide détaillé des nombreuses étapes d'une dérivation de tels potentiels avec la prise en compte de l'hybridation spd, ajustés ici sur des calculs DFT. Ce guide est établi tant pour un métal de transition pur que dans la perspective d'un couplage métal-covalent (carbures, nitrures et siliciures métalliques). / The zirconium-hydrogen system is of nuclear safety interest, as the hydride precipitation leads to the cladding embrittlement, which is made of zirconium-based alloys. The cladding is the first safety barrier confining the radioactive products: its integrity shall be kept during the entire fuel-assemblies life, in reactor, including accidental situation, and post-operation (transport and storage). Many uncertainties remain regarding the hydrides precipitation kinectics and the local stress impact on their precipitation. The atomic scale modeling of this system would bring clarifications on the relevant mechanisms. The usual atomistic modeling methods are based on thermostatistic approaches, whose precision and reliability depend on the interatomic potential used. However, there was no potential allowing a rigorous study of the Zr-H system. The present work has indeed addressed this issue: a new tight-binding potential for zirconium hydrides modeling is now available. Moreover, this thesis provides a detailed manual for deriving such potentials accounting for spd hybridization, and fitted here on DFT results. This guidebook has be written in light of modeling a pure transition metal followed by a metal-covalent coupling (metallic carbides, nitrides and silicides).
10

Atomistic simulation and experimental studies of transition metal systems involving carbon and nitrogen

Xie, Jiaying January 2006 (has links)
The present work was initiated to investigate the stability, structural and thermodynamic properties of transition metal carbides, nitrides and carbo-nitrides by atomistic simulations and experimentations. The interatomic pair potentials of Cr-Cr, Mn-Mn, Fe-Fe, C-C, Cr-C, Mn-C, Fe-C, Cr-Fe, Cr-N and Mn-N were inverted by the lattice inversion method and ab initio cohesive energies, and then employed to investigate the properties of Cr-, Mn- and Fe-carbides by atomistic simulations in this work. For the binary M7C3 carbide, the structural properties of M7C3 (M = Cr, Mn, Fe) were investigated by atomistic simulations. The results show that the stable structure for these compounds is hexagonal structure with P63mc space group. The cohesive energy of M7C3 calculated in this work indicates that the stability of carbides decreases with the increasing in metal atomic number. Further, the vibrational entropy of Cr7C3 was calculated at different temperatures and compared with the entropy obtained by experimentations. The comparison demonstrates that the main contribution to the entropy is made by the vibrational entropy. For the binary τ-carbides, the structural properties of Cr23C6 and Mn23C6, as well as the vibrational entropy of Cr23C6 were computed. Further, the site preference of ternary element Fe among 4a, 8c, 32f and 48h symmetry sites in Cr23-xFexC6 was studied. It has been seen that Fe atoms would firstly occupy 4a sites and then 8c sites. The lattice constant and stability of Cr23-xFexC6 were also computed with different Fe content. In order to understand the relative stability of the transition metal carbides and nitrides, the standard formation Gibbs energies of carbides and nitrides for Cr, Mn and Fe were compared. The order of carbon and nitrogen affinities for Cr, Mn and Fe was further clarified by the comparison of the interatomic pair potentials among Cr-C, Mn-C, Fe-C, Cr-N and Mn-N. It was found that Cr-N interaction was very strong in comparison with other binary interactions above and consequently, nitrogen addition would lead to a strong decrease in the thermodynamic activity of chromium in Cr-containing alloys. This was confirmed by the investigations of thermodynamic activities of Cr in the Fe-Cr-N and Fe-Cr-C-N alloys. The activities were measured in the temperature range 973-1173 K by solid-state galvanic cell method involving CaF2 solid electrolyte under the purified N2 gas. In addition, the analysis of nitrogen content and phase relationships in the Fe-Cr-N and Fe-Cr-C-N alloys equilibrated at 1173 K were carried out by inert-gas fusion thermal conductivity method, X-ray diffraction and scanning electron microscopy technique. The experimental results show that the solubility of nitrogen in the alloys decreases with the decreasing chromium content, as well as the increasing temperature. The addition of nitrogen to the alloys was found to have a strong negative impact on the Cr activity in Fe-Cr-N and Fe-Cr-C-N systems. / QC 20100929

Page generated in 0.1319 seconds