• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 23
  • 8
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The impact of oil price volatility on unemployment: a case study of South Africa

Senzangakhona, Phakama January 2014 (has links)
This study analyses and investigates the impact of crude oil price vitality on unemployment in South Africa. This is done by firstly surveying theoretical and empirical literature on the crude oil price-unemployment relationship before relating it to South Africa. Secondly, crude oil and unemployment trends with their causes are overviewed. The study employs a Johansen co-integration technique based on VAR to model unemployment against crude oil prices, real effective exchange rate, real interest rates and real gross domestic product. Using quarterly data for the period 1990-2010, econometric results show that crude oil prices are positively related to unemployment in the long run while the opposite is true in the short run. Parameter estimates and variables are statistically significant; hence there are also policy recommendations which are related to both empirical and theoretical literature. Lastly, impulse response functions show that unemployment returns to equilibrium in the long run when crude oil price changes whereas real interest rates followed by crude oil prices explain most of unemployment changes compared to other variables in the long run.
22

以FIGARCH模型估計長期利率期貨風險值 / Modeling Daily Value-at-Risk for Long-term Interest Rate Futures Using FIGARCH Models

吳秉宗, Wu,Pinh-Tsung Unknown Date (has links)
近幾年,風險值已經成為金融機構風險控管的重要工具。它的明確及簡單易懂是其讓人接受的原因,加上巴塞爾銀行監理委員會在1996提出的巴塞爾協定修正,規定銀行將市場風險因素納入考量,並允許銀行自行發展內部模型,以風險值模型衡量市場風險後,各種風險值的估算方法相繼被提出。 本篇論文是使用部分整合自回歸條件變異數(Fractional Integrated Generalized Autoregressive Conditional Heteroskedasticity,簡稱FIGARCH)計算長期利率期貨多空部位的每日風險值。選取的三支長期利率期貨是在芝加哥期貨交易所掛牌的三十年期美國政府債券期貨(TB)、十年期美國政府債券期貨(TN) 與十年期市政債券指數期貨(MNI)。 利率期貨的研究在過去文獻中,甚少被提及。但隨著利率型商品日新月異的發展,以利率期貨避險的需求也與日遽增。尤其在台灣,利率期貨更是今年新登場的期貨商品。因此,我選擇利率期貨作為研究標的,藉由以FIGARCH模型來配適波動性,提供避險者一個估算風險值的方法。 FIGARCH模型係由Baillie、Bollerslev與Mikkelsen於1996所提出,與傳統GARCH模型所不同的是,FIGARCH模型特別適用於描述具有波動性長期記憶(Long Memory)性質的資料。所謂長期記憶性,是指衝擊所造成的持續性是以緩慢的雙曲線速率衰退。而許多市場實證分析均指出,FIGARCH較適合用來描述金融市場上的波動性。此外,本研究的風險值計算,除了一般實務界常用的常態分配以外,還考慮了t分配與偏斜t分配,以捕捉財務資料常見的厚尾與偏斜的特性。 而實證結果顯示,長期利率期貨報酬率的波動性確實存在長期記憶性,所以FIGARCH(1,d,1)模型可以適切地估算長期利率期貨的每日風險值,不論在樣本內或樣本外的風險值計算均優於傳統GARCH(1,1)模型的計算結果。至於各種不同分配的比較,在樣本內的風險值計算,當α=0.05時,常態分配FIGARCH(1,d,1)模型表現較佳;當α=0.025到0.0025時,t分配與偏斜t分配FIGARCH(1,d,1)模型表現較佳,而偏斜t分配FIGARCH又稍微優於t分配FIGARCH(1,d,1)模型。 而樣本外的風險值預測,則有不同的結果,當α=0.05,t分配與偏斜t分配FIGARCH(1,d,1)模型表現較佳;而α=0.01時,常態分配FIGARCH(1,d,1)模型表現較佳。而且t分配與偏斜t分配FIGARCH(1,d,1)模型在α=0.01會出現太過保守的情形,出現失敗率(failure rate)為零,高估風險值。 / Value-at-Risk (VaR) has become the standard measure used to quantify market risk recently, and it is defined as the maximum expected loss in the value of an asset or portfolio, for a given probability α at a determined time period. This article uses the FIGARCH(1,d,1) models to calculate daily VaR for long-term interest rate futures returns for long and short trading positions based on the normal, the Student-t, and the skewed Student-t error distributions. The U.S. Treasury bonds futures, Treasury notes futures, and municipal notes index futures of daily frequency are studied. The empirical results show that returns series for three interest rate futures all have long memory in volatility, and should be modeled using fractional integrated models. Besides, the in-sample and out-of-sample VaR values generated using FIGARCH(1,d,1) models are more accurate than those generated using traditional GARCH(1,1) models. For different distributions among FIGARCH(1,d,1) models, the normal FIGARCH(1,d,1) models are preferred for in-sample VaR computing whenα=0.05, and the Student-t and skewed Student-t models perform better for in-sample VaR computing whenα=0.025-0.0025. Nonetheless, for out-of-sample VaR, the Student-t and skewed Student-t FIGARCH(1,d,1) models perform better in the case α=0.05 while the normal FIGARCH(1,d,1) models perform better in the case α=0.01. The VaR values obtained by the Student-t and skewed Student-t FIGARCH(1,d,1) models are too conservative whenα=0.01.
23

利率風險管理:期貨契約交叉避險之研究

林明勳 Unknown Date (has links)
在利率自由化的過程中,貨幣市場利率變化情形較以前劇烈,因此近年來 使得一些需要運用貨幣市場來融通短期資金的廠商與個人較以往面臨更大 的利率變動的風險。本文的主要目的在探討以芝加哥期貨交易所(CBOT)之 美國長期公債期貨合約、十年期公債期貨合約及五年期公債期貨合約及芝 加哥商品期貨交易所(CME) 的美國國庫券期貨、Eurodollar期貨之組合交 叉規避國內商業本票30天期、90天期、 180天期之次級市場的利率風險, 以了解利用國外利率期貨交叉規國內商業本票現貨利率風險的績效及不同 的避險期間與不同的避險比例對避險績效的影響。本研究之採樣期間 自1989年 1月至1992年10月底,並分為兩部份進行實證,一為整體樣本測 試避險模式、另一為樣本外交叉避險模式,且修正自身相關現象。 根據 實證結果,可以得到以下的結論與發現:1.在整體樣本測試交叉避模式之 自身相關迴歸分析中,當避險期間愈長時,則避險績效愈好。2.在樣本外 測試交叉避險模式--最適避險模式之價差迴歸分析與自身相關迴歸分析中 ,可以發現三種商業本票的交叉避險績效均以避險期間較短者擁有較好的 交叉避險績效。3.在樣本外測試交叉避險模式中,所有商業本票不論何種 避險期間,自然避險模式的交叉避險績效均比最適避險模式為差。4.在樣 本外測試交叉避 險模式--最適避險模式之價差迴歸分析與自身相關迴歸 分析中,可以發現所有商業本票,在單一期貨組合的交叉避險績效大致上 皆高於其他期貨組合的交叉避險績效,因此,在從事避險操作時,基於時 間及交易成本的考量,以單一期貨組合從事避險操作較為有利。

Page generated in 0.1125 seconds