• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quelques contributions à la modélisation micromécanique de l’argilite du Callovo-Oxfordien / Some contributions to the micromechanical modeling of Callovo-Oxfordian argillite

He, Zheng 11 December 2012 (has links)
Ce travail porte sur la mise en place des outils de modélisation micromécanique permettant d’étudier le comportement de l’argilite du Callovo-Oxfordien. Ce géomatériau poreux est modélisé comme un milieu hétérogène à trois échelles d’espace distinctes. L’échelle microscopique révèle l’hétérogénéité de la phase argileuse sur laquelle s’est appuyé le modèle morphologique synthétisé comme un polycristal poreux. Des prédictions numériques du comportement élasto-plastique et isotrope transverse de la phase d’argile tenant compte d’interactions mécaniques entre des cristaux sont effectuées à l’aide d’une approche incrémentale de Hill. Ensuite, un modèle poroélastique pour matériaux granulaires saturés avec effets d’interface imparfaite est proposé. Sur la base de ce modèle poroélastique et s’appuyant sur le cadre de l’homogénéisation non linéaire, on met en évidence l’impact des interfaces imparfaites de type Mohr-Coulomb cohésif sur le critère de résistance de géomatériaux granulaires. Enfin, nous avons proposé un modèle complet pour la prédiction de la résistance de l’argilite du Callovo-Oxfordien sous l’hypothèse que la matrice argileuse est un matériau poreux avec la phase solide décrite par un critère Drucker-Prager parfaitement plastique. Il est important de noter que le mécanisme de rupture exploré inclut la possibilité d’une concentration de déformation à l’interface de noyau (rigide)-matrice. Ce modèle est analysé en détail et ses prédictions apparaissent tout à fait probantes. / This work focuses on the development of micromechanical modeling tools to study the behavior of the Callovo-Oxfordian argillite. This geomaterial is modeled as a porous heterogeneous medium at three distinct spatial scales. The microscopic scale reveals the heterogeneity of the clay phase on which the morphological model synthesized as a porous polycrystal was based. Numerical predictions of the elastoplastic and transversely isotropic clay phase considering mechanical interactions between the crystals are performed by using an incremental approach. Then, a poroelastic model for saturated granular materials with imperfect interface effects is proposed. On the basis of this poroelastic model and the nonlinear homogenization, we showcase the impact of the cohesive Mohr-Coulomb imperfect interfaces on the strength criterion of granular geomaterials. Finally, we propose a complete model for the prediction of the strength of Callovo-Oxfordian argillite under the assumption that the clay matrix is a porous material with the solid phase described by a perfectly plastic Drucker-Prager criterion. It is important to note that the explored failure mechanism includes the possibility of a strain concentration at the (rigid) inclusion-matrix interface. This model is analyzed in detail and its predictions appear quite convincing.
2

Contributions à la modélisation des interfaces imparfaites et à l'homogénéisation des matériaux hétérogènes

Gu, Shui-Tao 15 February 2008 (has links) (PDF)
En mécanique des matériaux et des structures, l'interface entre deux composants matériels ou deux éléments structuraux est traditionnellement et le plus souvent supposé parfaite. Au sens mécanique, une interface parfaite est une surface à travers laquelle le vecteur de déplacement et le vecteur de contrainte sont tous les deux continus. L'hypothèse des interfaces parfaites est inappropriée dans de nombreuses situations en mécanique. En effet, l'interface entre deux corps ou deux parties d'un corps est un endroit propice aux réactions physico-chimiques complexes et favorable à l'endommagement mécanique. L'intérêt pour les interfaces imparfaites devient depuis quelques années grandissant avec le développement des matériaux et structures nanométriques dans lesquels les interfaces et surfaces jouent un rôle prépondérant. A partir de la configuration de base où une interphase de faible épaisseur sépare deux phases, ce travail établit trois modèles d'interface imparfaite généraux qui permettent de remplacer l'interphase par une interface imparfaite dans les cas de la conduction thermique, de l'élasticité linéaire et de la piézoélectricité sans perturber les champs en questions à une erreur fixée près. La dérivation de ces modèles est basée sur le développement de Taylor et sur une approche originale de géométrie différentielle indépendante de tout système de coordonnées. Les trois modèles généraux permettent non seulement de mieux appréhender certains modèles phénoménologiques d'interface imparfaite mais aussi de décrire les effets d'interface que les modèles existants ne sont pas en mesure de prendre en compte. Les modèles d'interface imparfaite établis sont appliqués dans la détermination des propriétés effectives thermiques, élastiques et piézoélectriques d'un matériau composite constitué d'une matrice renforcée par des particules ou fibres enrobées d'une interphase. La méthode utilisée pour rendre compte des effets des interfaces imparfaites sur les propriétés effectives repose sur une condition d'équivalence énergétique qui ramène un matériau hétérogène avec interfaces imparfaites à un matériau hétérogène avec interfaces parfaites
3

Contributions à la modélisation des interfaces imparfaites et à l'homogénéisation des matériaux hétérogènes / Contributions to the modeling of imperfect interfaces and to the homogenization of heterogeneous materials

Gu, Shui-Tao 15 February 2008 (has links)
En mécanique des matériaux et des structures, l’interface entre deux composants matériels ou deux éléments structuraux est traditionnellement et le plus souvent supposé parfaite. Au sens mécanique, une interface parfaite est une surface à travers laquelle le vecteur de déplacement et le vecteur de contrainte sont tous les deux continus. L’hypothèse des interfaces parfaites est inappropriée dans de nombreuses situations en mécanique. En effet, l’interface entre deux corps ou deux parties d’un corps est un endroit propice aux réactions physico-chimiques complexes et favorable à l’endommagement mécanique. L’intérêt pour les interfaces imparfaites devient depuis quelques années grandissant avec le développement des matériaux et structures nanométriques dans lesquels les interfaces et surfaces jouent un rôle prépondérant. A partir de la configuration de base où une interphase de faible épaisseur sépare deux phases, ce travail établit trois modèles d’interface imparfaite généraux qui permettent de remplacer l’interphase par une interface imparfaite dans les cas de la conduction thermique, de l’élasticité linéaire et de la piézoélectricité sans perturber les champs en questions à une erreur fixée près. La dérivation de ces modèles est basée sur le développement de Taylor et sur une approche originale de géométrie différentielle indépendante de tout système de coordonnées. Les trois modèles généraux permettent non seulement de mieux appréhender certains modèles phénoménologiques d’interface imparfaite mais aussi de décrire les effets d’interface que les modèles existants ne sont pas en mesure de prendre en compte. Les modèles d’interface imparfaite établis sont appliqués dans la détermination des propriétés effectives thermiques, élastiques et piézoélectriques d’un matériau composite constitué d’une matrice renforcée par des particules ou fibres enrobées d’une interphase. La méthode utilisée pour rendre compte des effets des interfaces imparfaites sur les propriétés effectives repose sur une condition d’équivalence énergétique qui ramène un matériau hétérogène avec interfaces imparfaites à un matériau hétérogène avec interfaces parfaites / In mechanics of materials and structures, the interface between two material components or two structural elements is traditionally and the most often assumed to be perfect. In mechanics, a perfect interface is a surface through which the displacement and stress vectors are continuous. The assumption of the perfect interfaces is inappropriate in many situations in mechanics. Indeed, the interface between two bodies or two parts of a body is a place propitious to complex physicochemical reactions and vulnerable to mechanical damage. The interest in imperfect interfaces has become for a few years growing with the development of nanometric materials and structures in which the interfaces and surfaces play a preponderant role. Starting from the basic configuration where an interphase of thin thickness separates two phases, this work establishes three general models of imperfect interface which make it possible to replace the interphase by an imperfect interface in the cases of thermal conduction, linear elasticity and piezoelectricity without disturbing the fields in questions to within a fixed error. The derivation of these models is based on the development of Taylor and an original coordinate-free approach of differential geometry. The three general models make it possible not only to get a better understanding of certain phenomenological models of imperfect interface but also to describe the effects of interface which the existing models are not able to take into account. The established models of imperfect interface are applied to determining the thermal, elastic and piezoelectric effective properties of composite materials consisting of a matrix reinforced by particles or fibers coated with an interphase. The method used to account for the effects of imperfect interfaces on the effective properties rests on an energy equivalency which brings back a heterogeneous material with imperfect interfaces to a heterogeneous material with perfect interfaces
4

Modélisation micromécanique des roches poreuses. Application aux calcaires oolitiques / Micromechanical modelling of porous rocks. Application to oolitic limestone

Nguyen, Ngoc Bien 03 December 2010 (has links)
Ce travail de thèse est consacré à l'étude du comportement poro-élastique linéaire et non linéaire des matériaux et géomatériaux poreux (notamment les calcaires oolithiques et le minerai de fer) par approche de changement d'échelle. A partir des observations microstructurales de ces matériaux, un modèle conceptuel a été proposé. Les roches poreuses étudiées sont constituées par un assemblage de grains (oolithes), à forte fraction volumique, cimentés par une matrice. La porosité, supposée connectée, est présente dans les oolithes (inter-oolithique) et dans la matrice (intra-oolithique). Un modèle d'homogénéisation à deux étapes est développé dans le cadre du modèle des sphères composites. L'importance des effets de liaison d'interface sur les propriétés poro-élastiques des sphères composites est étudiée en déterminant la solution exacte du modèle aux conditions d'interfaces parfaite ou/et imparfaite. Le modèle est tout d'abord appliqué pour estimer les propriétés effectives poro-élastiques linéaires des roches étudiées. Le comportement non linéaire de ces roches est étudié en attribuant à la matrice un comportement élastoplastique et en développant un comportement non linéaire pour les interfaces (oolithes - matrice). La comparaison entre résultats issus de la modélisation et ceux expérimentaux macroscopiques montre l'importance cruciale de la zone interfaciale de transition / This work is devoted to the modelling of the linear and non-linear hydro-mechanical behaviour of porous rocks (such as oolitic limestone, iron ore) by the multiscale modelling approach. Based on microstructure observations, a conceptual model was proposed. Porous rocks studied are constituted by an assemblage of grains (oolites), with high volume fraction, coated by a matrix. The overall porosity is supposed connected and decomposed into oolite porosity and matrix porosity. A two step homogenization method has been developed in the framework of CSA models (Composite Sphere Assemblage). The effect of interfacial bonding condition on poroelastic properties of composite sphere is investigated by determining the exact solution of the model in the case of perfect or/and imperfect interface. Micromechanical model is applied firstly to estimation of effective linear poroelastic properties of rocks studied. Their non-linear behaviour is studied by considering a elasto-plastic behavior for both the matrix and the interfaces (oolite-matrix). The comparison between numerical simulations and macroscopic experimental results underlined the crucial role of the interfacial transition zone
5

Étude expérimentale et modélisation micromécanique du comportement de composites hybrides : optimisation de la conductivité thermique / Experimental characterization and micromechanical modelling of the behavior of hybrid composite : optimization of the thermal conductivity

Jeancolas, Antoine 20 November 2018 (has links)
L’augmentation de la puissance électrique des composants électroniques pose le problème de la dissipation de la chaleur générée. Les boîtiers électriques doivent permettre la dissipation de cette chaleur en conservant une isolation électrique. La solution retenue pour évacuer la chaleur par transfert thermique consiste en matériaux composites dont les renforts par leur structuration vont améliorer la conductivité thermique. Des composites à matrice polymère ont été choisis pour leur aptitude de mise en forme. La conductivité thermique et l’isolation électrique sont assurées par des charges céramiques. Les méthodes d’homogénéisation donnent des pistes d’amélioration du comportement de composites en fonction des propriétés de leurs constituants, de leur géométrie et de leur distribution. Elles fournissent ainsi une formulation optimisée de matériaux répondant à certaines caractéristiques issues de cahiers des charges émanant du partenaire industriel (Institut de Soudure). La conductivité thermique attendue des composites impose une forte fraction volumique de charges pour compenser le caractère isolant de la matrice polymère. Des méthodes d’homogénéisation ont été développées pour prédire la conductivité thermique effective pour de forts taux de charges (supérieur à 20%) et des contrastes élevés de conductivité thermique. La présence d’une interphase provenant d’incompatibilités fortes entre les composants doit également être modélisée / The increase of electronic components in the integrated circuits and the required electrical power set the question of the dissipation of the heat generated. The electrical box must favor the heat dissipation while maintaining electrical insulation. The solution chosen to transfer the heat is to develop composite materials whose reinforcements by their structure will improve the thermal conductivity. Polymer-based composite materials were chosen for their building ability. Thermal conductivity and electrical insulation are insured by ceramic reinforcements. The homogenization methods allow to improve the composites’ design according to the properties of their constituents, their geometry and their distribution. They thus provide an optimized formulation of materials satisfying the characteristics emanating from the industrial partner (‘Institut de Soudure’). The expected thermal conductivity of the composites imposes a high volume fraction of reinforcements to counterbalance the insulating polymer matrix. Homogenization methods have been developed to provide predictions of effective thermal conductivity for high (greater than 20%) reinforcement rates and high thermal conductivity contrasts. The presence of an interphase resulting from strong physico-chemical incompatibilities between the components must also be modeled

Page generated in 0.0685 seconds