• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The transverse proximity effect in quasar spectra

Worseck, Gábor January 2007 (has links)
The intergalactic medium is kept highly photoionised by the intergalactic UV background radiation field generated by the overall population of quasars and galaxies. In the vicinity of sources of UV photons, such as luminous high-redshift quasars, the UV radiation field is enhanced due to the local source contribution. The higher degree of ionisation is visible as a reduced line density or generally as a decreased level of absorption in the Lyman alpha forest of neutral hydrogen. This so-called proximity effect has been detected with high statistical significance towards luminous quasars. If quasars radiate rather isotropically, background quasar sightlines located near foreground quasars should show a region of decreased Lyman alpha absorption close to the foreground quasar. Despite considerable effort, such a transverse proximity effect has only been detected in a few cases. So far, studies of the transverse proximity effect were mostly limited by the small number of suitable projected pairs or groups of high-redshift quasars. With the aim to substantially increase the number of quasar groups in the vicinity of bright quasars we conduct a targeted survey for faint quasars around 18 well-studied quasars at employing slitless spectroscopy. Among the reduced and calibrated slitless spectra of 29000 objects on a total area of 4.39 square degrees we discover in total 169 previously unknown quasar candidates based on their prominent emission lines. 81 potential z>1.7 quasars are selected for confirmation by slit spectroscopy at the Very Large Telescope (VLT). We are able to confirm 80 of these. 64 of the newly discovered quasars reside at z>1.7. The high success rate of the follow-up observations implies that the majority of the remaining candidates are quasars as well. In 16 of these groups we search for a transverse proximity effect as a systematic underdensity in the HI Lyman alpha absorption. We employ a novel technique to characterise the random absorption fluctuations in the forest in order to estimate the significance of the transverse proximity effect. Neither low-resolution spectra nor high-resolution spectra of background quasars of our groups present evidence for a transverse proximity effect. However, via Monte Carlo simulations the effect should be detectable only at the 1-2sigma level near three of the foreground quasars. Thus, we cannot distinguish between the presence or absence of a weak signature of the transverse proximity effect. The systematic effects of quasar variability, quasar anisotopy and intrinsic overdensities near quasars likely explain the apparent lack of the transverse proximity effect. Even in absence of the systematic effects, we show that a statistically significant detection of the transverse proximity effect requires at least 5 medium-resolution quasar spectra of background quasars near foreground quasars whose UV flux exceeds the UV background by a factor 3. Therefore, statistical studies of the transverse proximity effect require large numbers of suitable pairs. Two sightlines towards the central quasars of our survey fields show intergalactic HeII Lyman alpha absorption. A comparison of the HeII absorption to the corresponding HI absorption yields an estimate of the spectral shape of the intergalactic UV radiation field, typically parameterised by the HeII/HI column density ratio eta. We analyse the fluctuating UV spectral shape on both lines of sight and correlate it with seven foreground quasars. On the line of sight towards Q0302-003 we find a harder radiation field near 4 foreground quasars. In the direct vicinity of the quasars eta is consistent with values of 25-100, whereas at large distances from the quasars eta>200 is required. The second line of sight towards HE2347-4342 probes lower redshifts where eta is directly measurable in the resolved HeII forest. Again we find that the radiation field near the 3 foreground quasars is significantly harder than in general. While eta still shows large fluctuations near the quasars, probably due to radiative transfer, the radiation field is on average harder near the quasars than far away from them. We interpret these discoveries as the first detections of the transverse proximity effect as a local hardness fluctuation in the UV spectral shape. No significant HI proximity effect is predicted for the 7 foreground quasars. In fact, the HI absorption near the quasars is close to or slightly above the average, suggesting that the weak signature of the transverse proximity effect is masked by intrinsic overdensities. However, we show that the UV spectral shape traces the transverse proximity effect even in overdense regions or at large distances. Therefore, the spectral hardness is a sensitive physical measure of the transverse proximity effect that is able to break the density degeneracy affecting the traditional searches. / Das intergalaktische Medium wird durch das intergalaktische UV-Hintergrundsstrahlungsfeld in einem hochgradig photoionisierten Zustand gehalten. Der UV-Hintergrund stammt von der gesamten Population von Quasaren und Galaxien. In der Nähe von leuchtkräftigen Quasaren, ist das UV-Strahlungsfeld lokal erhöht durch den Anteil der Quelle. Der höhere Ionisationsgrad ist beobachtbar als eine reduzierte Liniendichte oder allgemein als ein vermindertes Maß an Absorption im Lyman-alpha Wald des neutralen Wasserstoffs. Dieser sogenannte Proximity-Effekt ist bei leuchtkräftigen Quasaren mit hoher statistischer Signifikanz nachgewiesen worden. Falls Quasare fast isotrop strahlen, dann sollten Sichtlinien zu Hintergrundquasaren in der Nähe von Vordergrundquasaren eine Region mit verminderter Absorption zeigen. Trotz beträchtlichen Aufwands wurde solch ein transversaler Proximity-Effekt nur in wenigen Fällen entdeckt. Bisher waren Studien des transversalen Proximity-Effekts meist begrenzt durch die kleine Anzahl von geeigneten projizierten Paaren oder Gruppen von hochrotverschobenen Quasaren. Mit dem Ziel die Zahl der Quasargruppen in der Nähe von hellen Quasaren beträchtlich zu erhöhen, führen wir eine gezielte Suche nach schwachen Quasaren um 18 oft studierte Quasare durch. Unter den reduzierten und kalibrierten spaltlosen Spektren von 29000 Objekten auf einer Gesamtfläche von 4.39 Quadratgrad entdecken wir insgesamt 169 vorher unbekannte Quasarkandidaten anhand ihrer Emissionslinien. 81 potentielle z>1.7 Quasare werden ausgesucht zur Bestätigung mittels Spaltspektroskopie am Very Large Telescope (VLT). Wir können 80 von diesen als Quasare bestätigen. 64 der neu entdeckten Quasare liegen bei z>1.7. Die hohe Erfolgsrate der Nachfolgebeobachtungen deutet an, dass die Mehrzahl der verbleibenden Kandidaten ebenfalls Quasare sind. In 16 dieser Gruppen suchen wir nach dem transversalen Proximity-Effekt als eine systematische Unterdichte in der HI Lyman-alpha-Absorption. Wir nutzen eine neuartige Methode die zufälligen Absorptionsfluktuationen zu charakterisieren, um die Signifikanz des transversalen Proximity-Effekts abschätzen zu können. Weder schwach aufgelöste noch hoch aufgelöste Spektren von Hintergrundquasaren unserer Gruppen zeigen Anzeichen für einen transversalen Proximity-Effekt. Aufgrund von Monte Carlo Simulationen sollte der Effekt jedoch nur schwach in der Nähe von 3 Vordergrundquasaren detektierbar sein. Deshalb können wir nicht zwischen An- oder Abwesenheit des Effekts unterscheiden. Selbst in Abwesenheit von systematischen Effekten zeigen wir, dass eine statistisch signifikante Detektion des transversalen Proximity-Effekts mindestens 5 Hintergrundquasarspektren bei mittlerer Auflösung nahe Vordergrundquasaren erfordert, deren UV-Fluss den UV-Hintergrund um einen Faktor 3 übersteigt. Deshalb erfordern statistische Studien des transversalen Proximity-Effekts große Zahlen von geeigneten Quasaren. Zwei Sichtlinien zeigen HeII-Absorption. Ein Vergleich der HeII-Absorption mit der entsprechenden HI-Absorption liefert eine Abschätzung der Spektralform des UV-Strahlungsfelds, das typischerweise durch das HeII/HI Säulendichteverhältnis eta parameterisiert wird. Wir analysieren die fluktuierende spektrale Form des UV-Strahlungsfelds auf beiden Sichtlinien und korrelieren sie mit 7 Vordergrundquasaren. Auf der Sichtlinie zu Q0302-003 finden wir ein härteres Strahlungsfeld nahe 4 Vordergrundquasaren. In der direkten Umgebung der Quasare ist eta konsistent mit Werten von 25-100, wogegen bei großen Entfernungen zu den Quasaren eta>200 erforderlich ist. Die zweite Sichtlinie zu HE2347-4342 sondiert kleinere Rotverschiebungen. Wieder finden wir, dass das Strahlungsfeld nahe der 3 Vordergrundquasaren signifikant härter ist als im allgemeinen. Während eta trotzdem große Fluktuationen nahe den Quasaren aufweist, die wahrscheinlich von Strahlungstransport herrühren, ist das Strahlungsfeld in der Nähe der Quasare im Mittel härter als in großer Entfernung. Wir interpretieren diese Entdeckungen als die ersten Detektionen des transversalen Proximity-Effekts als eine lokale Fluktuation im spektralen Härtegrad. Kein signifikanter HI Proximity-Effekt ist für die 7 Vordergrundquasare vorhergesagt. Tatsächlich ist die HI-Absorption nahe den Quasaren nahe am oder etwas über dem Mittelwert, was darauf hindeutet, dass die schwache Signatur des transversalen Proximity-Effekts maskiert wird durch intrinsische Überdichten. Jedoch zeigen wir, dass der Härtegrad den transversalen Proximity-Effekt selbst in überdichten Regionen oder auf großen Distanzen sichtbar werden läßt. Deshalb ist der spektrale Härtegrad ein empfindliches physikalisches Maß für den transversalen Proximity-Effekt, der in der Lage ist, die Dichteentartung zu brechen, die die traditionelle Suche behindert.
2

Constraining the UV background with the proximity effect

Dall'Aglio, Aldo January 2009 (has links)
After the epoch of reionisation the intergalactic medium (IGM) is kept at a high photoionisation level by the cosmic UV background radiation field. Primarily composed of the integrated contribution of quasars and young star forming galaxies, its intensity is subject to spatial and temporal fluctuations. In particular in the vicinity of luminous quasars, the UV radiation intensity grows by several orders of magnitude. Due to an enhanced UV radiation up to a few Mpc from the quasar, the ionised hydrogen fraction significantly increases and becomes visible as a reduced level of absorption in the HI Lyman alpha (Ly-alpha) forest. This phenomenon is known as the proximity effect and it is the main focus of this thesis. Modelling the influence on the IGM of the quasar radiation, one is able to determine the UV background intensity at a specific frequency (J_nu_0), or equivalently, its photoionisation rate (Gamma_b). This is of crucial importance for both theoretical and observational cosmology. Thus far, the proximity effect has been investigated primarily by combining the signal of large samples of quasars, as it has been regarded as a statistical phenomenon. Only a handful of studies tried to measure its signature on individual lines of sight, albeit focusing on one sight line only. Our aim is to perform a systematic investigation of large samples of quasars searching for the signature of the proximity effect, with a particular emphasis on its detection on individual lines of sight. We begin this survey with a sample of 40 high resolution (R~45000), high signal to noise ratio (S/N~70) quasar spectra at redshift 2.1<z<4.7, publicly available in the European Southern Observatory (ESO) archive. The extraordinary quality of this data set enables us to detect the proximity effect signature not only in the combined quasar sample, but also along each individual sight line. This allows us to determine not only the UV background intensity at the mean redshift of this sample, but also to estimate its intensity in small (Delta z~0.2) redshift intervals in the range 2<z<4. Our estimates (J_nu_0~ 3x10^{-22} erg s^{-1} cm^{-2} Hz^{-1} sr^{-1}) are for the first time in very good agreement with different constraints of its evolution obtained from theoretical predictions and numerical simulations. We continue this systematic analysis of the proximity effect with the largest search to date invoking the Sloan Digital Sky Survey (SDSS) data set. The sample consists of 1733 quasars at redshifts z>2.3. In spite of the low resolution and limited S/N we detect the proximity effect on about 98% of the quasars at a high significance level. Thereby we are able to determine the evolution of the UV background photoionisation rate within the redshift range 2<z<5 finding Gamma_b~ 1.6x10^{-12} s^{-1}. With these new measurements we explore literature estimates of the quasar luminosity function and predict the stellar luminosity density up to redshift of about z~5. Our results are globally in good agreement with recent determinations inferred from deep surveys of high redshift galaxies. We then compare our measurements on the UV background photoionisation rate inferred from the two samples at high and low resolution. While these data sets show extreme differences, our determinations are in considerable agreement at z<3.3, even though they show less agreement at higher redshifts. We suspect that this may be caused by either the small number of high resolution quasar spectra at the highest redshifts considered or by some systematic effect due to the limited data quality of SDSS. Complementary to the observational investigation of the proximity effect on high redshift quasars, we exploit some theoretical aspects linked to and based on the results on this phenomenon. We employ complex numerical simulations of structure formation to achieve a better representation of the Ly-alpha forest. Modelling the signature of the proximity effect on randomly selected sight lines, we prove the advantages of dealing with individual lines of sight instead of combining their signal to investigate this phenomenon. Furthermore, we develop and test novel techniques aimed at a more precise determination of the proximity effect signal. With this investigation we demonstrate that the technique developed and employed in this thesis is the most accurate adopted thus far. Tighter determinations of the UV background are certainly based on suitable methods to detect its signature, but also on a deeper understanding of the environments in which quasars form and evolve. We initiate an investigation of complex numerical simulations including the radiative transport of energy to model in a more detailed way the proximity effect. Such a simulation may lead to the characterisation of the quasar environment based on the comparison between the observed and simulated statistical properties of the proximity effect signature. / Nach dem kosmologischen Zeitalter der Reionisation wird der hohe Photoionisationsgrad des intergalaktische Mediums (IGM) durch die kosmische UV-Hintergrundstrahlung aufrecht erhalten. Zur Intensitaet der Hintergrundstrahlung tragen hauptsaechlich Quasare und jungen Galaxien bei. Daher entstehen sowohl raeumliche als auch zeitliche Fluktuationen, wobei die Intensistaet insbesondere in der Naehe von leuchtkraeftigen Quasaren um mehrere Groessenordnungen ansteigt. Aufgrund der erhoehten UV-Strahlung in einer Entfernung von bis zu einigen Mpc von einem Quasar wird ein groesserer Anteil des intergalaktischen Wasserstoffs ionisiert, was als reduzierte Absorption im Lyman alpha (Ly-alpha) Wald sichtbar wird. Dieses Phaenomen wird proximity effect genannt und ist das Hauptthema dieser Arbeit. Durch Modellierung des Einflusses des Quasars auf das IGM kann die Intensitaet des UV-Hintergrunds bei einer bestimmten Frequenz (J_nu_0) bzw. die entsprechende Photoionisationrate (Gamma_b) bestimmt werden. Dies ist sowohl fuer die theoretische als auch fuer die beobachtende Kosmologie eine wichtige Groesse. Bisher wurde der Proximity-Effekt als ein statistisches Phaenomen untersucht, wobei die Signale vieler einzelner Quasare kombiniert wurden. Nur in wenigen Analysen wurde versucht, den Effekt in einzelnen Sehlinien zu detektieren. Das Ziel dieser Arbeit ist eine systematische Untersuchung des Proximity-Effekts in einer grossen Anzahl von Quasaren, wobei der besonderen Schwerpunkt auf seiner Detektion in einzelnen Sehlinien liegt. Zunaechst werden 40 Quasare im Rotverschiebungsbereich 2.1<z<4.7 untersucht, deren Spektren mit hoher Aufloesung (R=45000) und hohem Signal-zu-Rausch-Verhaeltnis (S/N~70) im Archiv des European Southern Observatory (ESO) vorliegen. Die ausserordentlich gute Qualitaet dieser Daten ermoeglicht die Detektion des Proximity-Effekts nicht nur als kombiniertes Signal aller Quasare sondern auch in jeder einzelnen Sehlinie. Daher konnten wir nicht nur die Intensitaet des UV-Hintergrunds bei der mittleren Rotverschiebung ermitteln sondern auch in kleineren Rotverschiebungsintervallen (Delta z~0.2) im Bereich 2<z<4. Unsere Ergebnisse (J_nu_0}~3x10^{-22} erg s^{-1} cm^{-2} Hz^{-1} sr^{-1}) stimmen zum ersten Mal gut anderen Bestimmungen ueberein, die auf theoretischen Voraussagen und auf numerischen Simulationen beruhen. Unsere systematische Analyse des Proximity-Effekts wird mit dem bisher groessten Datensatz bestehend aus 1733 Quasaren mit Rotverschiebungen z>2.3 aus dem Sloan Digital Sky Survey (SDSS) fortgefuehrt. Trotz der niedrigen Aufloesung und dem begrenzten S/N detektieren wir den Proximity-Effekt mit einer hohen Signifikanz in etwa 98% der Sehlinen. Dabei kann die Entwicklung der Photoionisationsrate Gamma_b~1.6x10^{-12} s^{-1} im Rotverschiebungsbereich 2<z<5 bestimmt werden. Mit diesen neuen Messungen diskutieren wir verschiedene Quasar-Leuchtkraftfunktionen aus der Literatur und berechnen die stellare Emissivitaet bis z~5. Unsere Ergebnisse stimmen im Allgemeinen gut mit denen von neueren Himmelsdurchmusterungen nach hochrotverschobenen Galaxien ueberein. Dann vergleichen wir die auf den hoch bzw. niedrig aufgeloesten Spektren basierenden Photoionisationsraten miteinander. Obwohl die Datensaetze sehr unterschiedlich sind, fuehren sie bei z<3.3 zu den selben Ergebnissen, waehrend die Resultate bei hoeheren Rotverschiebungen weniger gut uebereinstimmen. Wir vermuten, dass dies entweder durch die kleine Anzahl von hochaufgeloesten Quasarspektren bei den hoechsten Rotverschiebungen, oder durch systematische Effekte der geringen SDSS Datenqualitaet hervorgerufen wird. Ergaenzend zu der Auswertung der Beobachtungsdaten fuehren wir basierend auf unseren Ergebnissen einige theoretische Untersuchugen durch. Wir benutzen komplexe Strukturbildungssimulationen, um eine bessere Beschreibung des Ly-alpha-Walds zu gewinnen. Mit Hilfe der Modellierung des Proximity-Effekts in zufaellig ausgesuchten Sehlinien zeigen wir den Vorteil auf, den die Analyse einzelner Sehlinien im Vergleich zur kombinierten Auswertung mehrerer Spektren hat. Ausserdem entwickeln und testen wir neue Ansaetze zur genaueren Bestimmung des Proxmity-Effekts. Dabei zeigen wir, dass die im Rahmen dieser Arbeit entwickelte und angewendete Methode bisher zu den genauesten Ergebnissen fuehrt. Fuer eine noch bessere Bestimmung des UV-Hintergurnds brauchen wir neben der optimalen Detektionsmethode auch ein tieferes Verstaendnis der Umgebung, in der Quasare entstehen und sich entwickeln. Wir beginnen eine Analyse komplexer numerischer Simulationen, die auch Strahlungstransportrechungen beinhalten, um weitere Details des Proximity-Effekts zu verstehen. Der Vergleich der statistischen Eigenschaften des Proximity-Effekts in solchen Simulationen mit Beobachtungen koennte in Zukunft zu einer genaueren Beschreibung der Umgebung von Quasaren fuehren.
3

A detailed view of filaments and sheets of the warm-hot intergalactic medium

Klar, Jochen January 2012 (has links)
In the context of cosmological structure formation sheets, filaments and eventually halos form due to gravitational instabilities. It is noteworthy, that at all times, the majority of the baryons in the universe does not reside in the dense halos but in the filaments and the sheets of the intergalactic medium. While at higher redshifts of z > 2, these baryons can be detected via the absorption of light (originating from more distant sources) by neutral hydrogen at temperatures of T ~ 10^4 K (the Lyman-alpha forest), at lower redshifts only about 20 % can be found in this state. The remain (about 50 to 70 % of the total baryons mass) is unaccounted for by observational means. Numerical simulations predict that these missing baryons could reside in the filaments and sheets of the cosmic web at high temperatures of T = 10^4.5 - 10^7 K, but only at low to intermediate densities, and constitutes the warm-hot intergalactic medium (WHIM). The high temperatures of the WHIM are caused by the formation of shocks and the subsequent shock-heating of the gas. This results in a high degree of ionization and renders the reliable detection of the WHIM a challenging task. Recent high-resolution hydrodynamical simulations indicate that, at redshifts of z ~ 2, filaments are able to provide very massive galaxies with a significant amount of cool gas at temperatures of T ~ 10^4 K. This could have an important impact on the star-formation in those galaxies. It is therefore of principle importance to investigate the particular hydro- and thermodynamical conditions of these large filament structures. Density and temperature profiles, and velocity fields, are expected to leave their special imprint on spectroscopic observations. A potential multiphase structure may act as tracer in observational studies of the WHIM. In the context of cold streams, it is important to explore the processes, which regulate the amount of gas transported by the streams. This includes the time evolution of filaments, as well as possible quenching mechanisms. In this context, the halo mass range in which cold stream accretion occurs is of particular interest. In order to address these questions, we perform particular hydrodynamical simulations of very high resolution, and investigate the formation and evolution of prototype structures representing the typical filaments and sheets of the WHIM. We start with a comprehensive study of the one-dimensional collapse of a sinusoidal density perturbation (pancake formation) and examine the influence of radiative cooling, heating due to an UV background, thermal conduction, and the effect of small-scale perturbations given by the cosmological power spectrum. We use a set of simulations, parametrized by the wave length of the initial perturbation L. For L ~ 2 Mpc/h the collapse leads to shock-confined structures. As a result of radiative cooling and of heating due to an UV background, a relatively cold and dense core forms. With increasing L the core becomes denser and more concentrated. Thermal conduction enhances this trend and may lead to an evaporation of the core at very large L ~ 30 Mpc/h. When extending our simulations into three dimensions, instead of a pancake structure, we obtain a configuration consisting of well-defined sheets, filaments, and a gaseous halo. For L > 4 Mpc/h filaments form, which are fully confined by an accretion shock. As with the one-dimensional pancakes, they exhibit an isothermal core. Thus, our results confirm a multiphase structure, which may generate particular spectral tracers. We find that, after its formation, the core becomes shielded against further infall of gas onto the filament, and its mass content decreases with time. In the vicinity of the halo, the filament's core can be attributed to the cold streams found in other studies. We show, that the basic structure of these cold streams exists from the very beginning of the collapse process. Further on, the cross section of the streams is constricted by the outwards moving accretion shock of the halo. Thermal conduction leads to a complete evaporation of the cold stream for L > 6 Mpc/h. This corresponds to halos with a total mass higher than M_halo = 10^13 M_sun, and predicts that in more massive halos star-formation can not be sustained by cold streams. Far away from the gaseous halo, the temperature gradients in the filament are not sufficiently strong for thermal conduction to be effective. / Im Rahmen der kosmologischen Strukturbildung entstehen durch Gravitationsinstabilitäten Flächen, Filamente und schließlich Halos. Interessanterweise befinden sich zu jedem Zeitpunkt der kosmologischen Entwicklung der Großteil der Baryonen nicht in den Halos, sondern in den Filamenten und Ebenen des intergalaktischen Mediums. Während diese Baryonen bei höheren Rotverschiebungen (z ~ 2) noch in Form durch die Absorbtion von Licht (von weit entfernteren Quellen) durch neutralen Wasserstoff bei einer Temperatur von T ~ 10^4 K beobachtbar sind (Lyman-Alpha Wald), gilt dies bei niedrigeren Rotverschiebungen für nur noch ca. 20 % der Baryonen. Der überwiegende Teil (ca. 50-70 % der gesamten baryonischen Masse) sind bisher noch nicht direkt beobachtbar. Numerische Simulationen sagen jedoch voraus, das sich diese Baryonen in den Filamenten und Flächen des kosmischen Netzes befinden. Die entsprechende Gasverteilung zeichnet sich durch hohe Temperaturen T = 10^5 - 10^7 K und geringe bis mittlere Dichten aus und wird als warm-heißes intergalaktisches Medium (WHIM) bezeichnet. Die hohen Temperaturen entstehen in Folge der Bildung von Stoßwellen und der darauf folgenden Erhitzung des Gases (shock-heating). Das WHIM ist daher hochgradig ionisiert und sein verlässlicher Nachweis stellt eine große Herausforderung für die beobachtende Kosmologie dar. Neuere hydrodynamische Simulationen zeigen, dass sich bei höheren Rotverschiebungen von z ~ 2 Gasströmungen entlang der Filamente bilden, die massive Galaxien mit erheblichen Mengen an relativ kaltem Gas (T ~ 10^4 K) versorgen können. Dies hätte einen erheblichen Einfluss auf die Sternentstehung in diesen Galaxien. Es ist daher von grundsätzlichem Interesse, die spezifischen hydro- und thermodynamischen Bedingungen in den Strukturen des WHIM zu untersuchen. Sowohl Dichte- und Temperaturprofile als auch Geschwindigkeitsfelder prägen spektroskopische Beobachtungen. Eine mögliche Mehrphasenstruktur des WHIM könnte daher als Indikator in beobachtenden Studien dienen. Im Zusammenhang mit den kalten Strömen ist es besonders interessant, Prozesse zu untersuchen die den Zufluss von kaltem Gas zu den Galaxien regulieren. Dies umfasst die Zeitentwicklung des Anteils an kaltem Gas in den Filamenten, sowie mögliche Mechanismen, die zum Versiegen des Zuflusses von kaltem Gas auf die Galaxienscheibe führen. Um diese Zusammenhänge zu erforschen, führen wir spezielle hydrodynamische Simulationen mit sehr hoher Auflösung durch, die zu ausgewählten, wohldefinierten Strukturen führen, die das WHIM charakterisieren. Wir beginnen mit einer ausführlichen Untersuchung des eindimensionalen Kollaps einer sinusförmigen Störung (pancake formation). Hierbei untersuchen wir den Einfluss von Strahlungkühlung, Heizung durch den intergalaktischen UV Hintergrund, Wärmeleitung, sowie von kleinskaligen Störungen, welche dem kosmologischen Störungsspektrum folgen. Wir benutzen hierbei eine Reihe von Simulationen, welche die Längenskala der anfänglichen Störung L als Parameter verwenden. Für L ~ 2 Mpc/h führt der Kollaps zur Ausbildung einer Stoßwelle. Zusätzlich entsteht als Folge der Strahlungskühlung und der Heizung durch den UV Hintergrund ein relativ dichter und kalter isothermer Kern. Mit ansteigendem L wird dieser Kern dichter und kompakter. Durch Wärmeleitung reduziert sich die räumliche Ausdehnung des Kerns. Für L ~ 30 Mpc/h führt dies zu einem Verschwinden des Kerns. Mit der Erweiterung unserer Methodik auf dreidimensionale Simulationen, entsteht nun eine Konfiguration, welche aus wohldefinierten Flächen, Filamenten und einem gasförmigen Halo besteht. Für L > 4 Mpc/h, erhalten wir Filamente, die vollständig durch Akkretionsschocks begrenzt sind. Wie in unseren eindimensionalen Simulationen weisen auch sie einen isothermen Kern auf. Dies legt nahe, dass das WHIM eine Mehrphasenstruktur besitzt und mögliche Spektralsignaturen erzeugen kann. Nach seiner Entstehung ist der Kern gegen weiteren Zufluss von Gas abgeschirmt und seine Masse reduziert sich mit der Zeit. In der direkten Umgebung des Halos entspricht der Kern des Filamentes den oben angesprochenen kalten Strömen. Unsere Untersuchung zeigt, dass diese während der gesamten Entwicklung des Halos existent sind. In der weiteren Entwicklung werden sie durch den expandierenden Akkretionsschock des Halos verengt. Ab einer Skala von L > 6 Mpc/h kann Wärmeleitung zu einem Verschwinden des Zustroms von kaltem Gas führen. Diese Skala entspricht Halos mit einer Gesamtmasse von M_halo = 10^13 M_sun. Galaxien, die sich in noch massiveren Halos bilden, können daher nicht durch kalte Ströme mit Gas für die Sternentstehung versorgt werden. Im Filament, weit außerhalb des gasförmigen Halos, sind die Temperaturgradienten zu klein, um effiziente Wärmeleitung zu ermöglichen.
4

The Stochastic Intergalactic Attenution and its Impact on High-Redshift Galaxies / Die stochastische, intergalaktische Attenuation und ihr Effekt auf hoch rotverschobenen Galaxien

Tepper-García, Thorsten 11 July 2007 (has links)
No description available.

Page generated in 0.1019 seconds