• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 70
  • 23
  • 23
  • 11
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 183
  • 82
  • 52
  • 50
  • 46
  • 24
  • 23
  • 21
  • 20
  • 19
  • 17
  • 17
  • 17
  • 17
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Librational Modes of Solid N2 and CO

Henkelman, Ross Mark 08 1900 (has links)
<p> An intermolecular potential between two diatomic molecules consisting of quadrupole, dispersion and repulsive terms has been used to determine the librational modes of the molecules in the solid α phase. Fixed centers of mass of the molecules, i.e. no translational motion has been assumed and the calculation is carried out in the small angle approximation for both N2 and CO. The calculated modes of nitrogen are used to study the temperature dependence of the nuclear quadrupole resonance frequency. The results are compared with Raman scattering and N.Q.R. experiments. An alternate approximation is included in the discussion.</p> / Thesis / Master of Science (MSc)
32

Intermolecular Association of an Oblong Shape-persistent Macrocycle and Refunctionalization of Folding ortho-Phenylene Oligomers

Chu, Meng 20 July 2016 (has links)
No description available.
33

PVTX and Raman Spectral Properties of Fluids at Elevated Pressures and Temperatures

Sublett, David Matthew Jr. 08 January 2020 (has links)
Fluids are associated with a wide range of physical and chemical processes in the Earth, including transporting and concentrating important ore elements such as Cu, Au, Zn, and Pb. Significant amounts of fluid may be generated as a result of dehydration or decarbonation reactions, and the volatile content of a magma is directly linked to the explosivity of eruptions. In most cases, small amounts of the fluids involved in the formation or alteration of rocks are trapped within minerals in the form of fluid inclusions. These fluid inclusions may be studied to understand the composition and pressure and temperature of the original fluid involved in the geologic process of interest, however, an understanding of the composition of the fluid as well as how the fluid behaves under changing pressure and temperature conditions is essential to reconstruct the fluid evolution path based on data obtained from fluid inclusions. Several analytical techniques are involved in the study of fluids, including fluid inclusion microthermometry and Raman spectroscopy. Microthermometry is the heating/cooling of fluid inclusions to observe and record temperatures of phase changes which, in turn, are used to determine properties such as salinity (based on the freezing point depression of liquid), or density based on the temperature at which all phases within the fluid inclusion homogenize to a single phase. Raman spectroscopy is a non-destructive analytical technique that measures the vibrational frequency of molecules in a given material. The Raman spectral properties of fluids act as a "fingerprint" of the chemical species within the fluid and serve to identify both the presence of chemical species, such as H2O, N2, CO2, and CH4, and the density of the fluid. Microthermometric and Raman spectroscopic experiments involving synthetic fluid systems are necessary to elucidate the pressure-volume-temperature-composition (PVTX) and Raman spectral behavior of the fluid systems, which then aids in the study and characterization of natural fluids. In chapter 1, the partitioning of NaCl and KCl between coexisting immiscible fluid phases during boiling is experimentally determined at temperatures and pressures relevant to magmatic-hydrothermal systems using synthetic fluid inclusions. The partitioning behavior is then combined with literature data to calculate the Na/K ratio of the original silicate melt phase in a magma body before the exsolution of a fluid phase. In chapter 2, we explore the Raman spectral behavior of N2, CO2, and CH4 in pure, single-component systems from PT conditions corresponding to the liquid-vapor curve to elevated temperatures and pressures, and relate the changes in the spectral behavior to changes in the bonding environment of the molecules through intermolecular attraction and repulsion. In chapter 3, the observations and relationships determined for pure fluids and described in chapter 2 are used to explore the Raman spectral properties of N2, CO2, and CH4 in the N2-CO2-CH4 ternary system and the manner in which the spectral behavior of each component in the system varies with changing temperature, pressure, molar volume, and fugacity. / Doctor of Philosophy / Water and other fluids play an important role in the formation of mineral deposits that are the source of the many metals, such as copper, silver, gold, and others, that are needed by a modern technological society. In addition, water and other fluids affect the way rocks behave under stress and can promote earthquakes and influence the explosivity of volcanoes. When minerals in a rock form, often small amounts of the fluid will be trapped within the minerals in the form of fluid inclusions. These fluid inclusions contain samples of the fluid involved in the geologic process of interest and can be studied using a variety of methods to determine the chemistry and the temperature and pressure conditions of rock formation. Two of the many methods used to study fluid inclusions are microthermometry and Raman spectroscopy. Microthermometry involves heating and/or cooling the fluid inclusion while it is being observed on a microscope, and this method can be used to determine the salinity of water in the inclusion and the fluid density. The density of the fluid may then be used to determine the pressure or temperature at which the fluid was encapsulated into the rock, and by extension the temperature and pressure at which the rock formed. Raman spectroscopy is an analytical technique in which a rock or fluid is illuminated using a laser. The laser light interacts with the rock or fluid and gains or loses energy, and this change in energy serves as a "fingerprint" to identify the molecules in the rock or fluid. The Raman spectrum can also be used to determine fluid density because the signal generated when the laser interacts with the fluid depends on the density of the fluid. Experiments on fluids at carefully-controlled laboratory conditions are necessary to understand the behavior of fluids trapped in natural samples. In chapter 1, the preference of sodium and potassium to go into either a liquid or a gas phase during boiling at high pressures and temperatures is determined. In chapter 2, gases containing only nitrogen, carbon dioxide, or methane are studied using Raman spectroscopy and the changes in the Raman behavior of the gases with changing pressure and temperature are related to molecular interactions. In chapter 3, the results from chapter 2 are used to understand the Raman behavior of nitrogen, carbon dioxide, and methane in gas mixtures as pressure and temperature are changed and how this relates to the interactions of the molecules.
34

Dímeros Cíclicos de derivados do ácido metanóico: um estudo computacional de propriedades moleculares, topológicas e do efeito cooperativo.

Maia Neto, José Alberto 11 August 2015 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-05-05T13:15:05Z No. of bitstreams: 1 arquivo total.pdf: 2975630 bytes, checksum: b2593e52b5f5a204312589a9ac8406b6 (MD5) / Made available in DSpace on 2016-05-05T13:15:05Z (GMT). No. of bitstreams: 1 arquivo total.pdf: 2975630 bytes, checksum: b2593e52b5f5a204312589a9ac8406b6 (MD5) Previous issue date: 2015-08-11 / The main objective of this study is to elucidate the cooperative effect caused by the formation of dimers of carboxylic acids, R-COOH, with R= -H, -CH3 e –OH, by the formation of two intermolecular hydrogen bonds. In order to complement the study of cooperative effect, changes in structural, electronic, vibrational and topological of the species involved due to the intermolecular interaction were analyzed. The quantum-computational methods employed were MP2 and DFT/B3LYP, both together with the base 6-311++G(d,p). The QTAIM and NBO methods were used to assess the topology of the electron density and the greatest contribution to the orbital intermolecular interaction, respectively. The results showed no significant differences between the two methods correlated, leading us to suggest the use of DFT / B3LYP method to study similar systems to the investigated here due to their lower computational requirements. The increment values in bond length of the proton donor group are enhanced in dimers R = -CH3 in both calculating levels. The values of intermolecular bond length in dimers R = -OH were the smallest observed in both MP2 and DFT / B3LYP methods. The carboxylic acids dimers with R = -CH3 were the most stabilized by the formation of hydrogen bonds. Regarded to the harmonic effect redshift stretching mode of proton donating groups to carboxylic acids, they were well pronounced and could be observed in all dimers. The new vibrational modes were also pronounced, emphasizing the stretch of the intermolecular bond method. From the studies employing QTAIM was possible to obtain the values of the electron density and the Laplacian of the electron density and evaluate these parameters at critical points in OH bond and intermolecular hydrogen bond, demonstrating the formation of hydrogen dimers. With studies employing the NBO method were evaluated pair of orbital occupancy variations not shared electrons of oxygen (proton donor) and the interaction energy of the orbital involved in intermolecular hydrogen bond. / O principal objetivo do presente trabalho é elucidar o efeito cooperativo ocasionado pela formação de dímeros de ácidos carboxílicos, R-COOH, com R= -H, -CH3 e –OH, pela formação de duas ligações de hidrogênio intermoleculares. Em complemento ao estudo do efeito cooperativo, mudanças nas propriedades estruturais, eletrônicas, vibracionais e topológicas das espécies envolvidas devido à interação intermolecular foram avaliadas. Os métodos quântico-computacionais empregados foram MP2 e DFT/B3LYP, ambos com o conjunto de base 6-311++G(d,p). Os métodos QTAIM e NBO foram empregados para avaliar a topologia da densidade eletrônica e os orbitais de maior contribuição para a interação intermolecular, respectivamente. Os resultados não mostraram diferenças significativas entre os dois métodos correlacionados empregados, nos levando a sugerir o emprego do método DFT/B3LYP para estudos de sistemas semelhantes aos investigados aqui, devido a menor demanda computacional desses. Os valores de incremento no comprimento de ligação do grupo doador de próton são mais acentuados nos dímeros com R= -CH3, em ambos os níveis de cálculo. Os valores de comprimento de ligação intermolecular nos dímeros com R= -OH são os menores observados, em ambos os métodos MP2 e DFT/B3LYP. Os dímeros dos ácidos carboxílicos com R= -CH3 foram os mais estabilizados pela formação das ligações de hidrogênio. Com respeito ao efeito redshift para o modo de estiramento harmônico dos grupos doadores de próton nos ácidos carboxílicos, estes foram bem acentuados, podendo ser observados em todos os dímeros. Foram ainda destacados os novos modos vibracionais, dando ênfase ao modo de estiramento da ligação intermolecular. Dos estudos empregando a QTAIM foi possível obter os valores da densidade eletrônica e do Laplaciano da densidade eletrônica e avaliar os valores desses parâmetros nos pontos críticos de ligação em O-H e na ligação de hidrogênio intermolecular, comprovando dessa forma a formação dos dímeros de hidrogênio. Com os estudos empregando o método NBO foram avaliadas as variações de ocupação do orbital do par de elétrons não compartilhado do oxigênio (doador de próton) e a energia de interação dos orbitais envolvidos na ligação de hidrogênio intermolecular.
35

Ligação de hidrogênio intermolecular entre o benzeno e as espécies doadoras de próton: HF, HCl, HCN, H2O, NH3, CH4 E C2H6

Silva, Jefferson José Soares da 30 June 2015 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-05-18T11:30:52Z No. of bitstreams: 1 arquivo total.pdf: 3924761 bytes, checksum: 10fd32043ab09f5cc3f02a7885814b08 (MD5) / Made available in DSpace on 2016-05-18T11:30:52Z (GMT). No. of bitstreams: 1 arquivo total.pdf: 3924761 bytes, checksum: 10fd32043ab09f5cc3f02a7885814b08 (MD5) Previous issue date: 2015-06-30 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work deals with the computational quantum study of structural, electronic , vibrational and topological properties of hydrogen complexes C6H6•••HX , with proton, donor species , HF , HCl , H2O , HCN , NH3 , CH4 and C2H6 , interacting with a region of high electron density of the type π present in benzene. The computational methods of electronic structure Density Functional Theory with Hybrid functional B3LYP and PBE1PBE and Perturbative Theory of Many Bodies of order 2 were employed, all with the Pople basis set 6-311 ++ G ( d, p ) . The values of hydrogen bonding energy were submitted to Basis set superposition error and Vibrational Zero Point Energy corrections. The complexes of hydrogen HF, HCl, HCN, H2O and NH3 showed increments in H-X bond length, while CH4 and C2H6 have presented a shortening, H-C bond length due to formation of the intermolecular bond. The corrected intermolecular energy values follow the reverse trend of the values obtained for the increase, in H-X bond length. With the exception of ethane, all redshift values are positive, with higher values when the symmetry was not fixed. The employment of quantum theory of atoms in molecules shows the change in electron density of both interacting species, and in addition the density values are small and the density of the Laplacian are positive. The methods followed the same trend for the properties of interest, suggesting the use of calculations via density functional theory due to lower computational requirements, to study such systems. / Este trabalho trata do estudo quântico computacional de propriedades estruturais, eletrônicas, vibracionais e topológicas dos complexos de hidrogênio C6H6•••H-X, com as espécies doadoras de próton, HF, HCl, H2O, HCN, NH3, CH4 e C2H6, interagindo com uma região de alta densidade eletrônica do tipo π presente no benzeno. Os métodos computacionais de estrutura eletrônica empregados foram a Teoria do Funcional da Densidade com os funcionais híbridos B3LYP e PBE1PBE e a Teoria Perturbativa de Muitos Corpos de ordem 2, todos com o conjunto de base de Pople 6-311++G(d,p). Os valores da energia da ligação de hidrogênio sofreram correções do Erro de Superposição do Conjunto de Funções de Base e da Energia Vibracional do Ponto Zero. Os complexos de hidrogênio com HF, HCl, HCN, H2O e NH3 apresentaram incrementos no comprimento da ligação H-X, enquanto o CH4 e o C2H6 chegaram a apresentar encurtamento do comprimento de ligação H-C, devido a formação da ligação intermolecular. Os valores de energia intermolecular corrigida seguem a tendência inversa dos valores obtidos para o incremento do comprimento de ligação H-X. Com exceção do etano, todos os valores redshift são positivos, apresentando valores mais elevados quando a simetria não foi fixada. O emprego da teoria quântica de átomos em moléculas evidencia a mudança na densidade eletrônica de ambas as espécies interagentes, e, além disso os valores da densidade são pequenos e do laplaciano da densidade são positivos. Os métodos empregados seguiram a mesma tendência para as propriedades de interesse, sugerindo o uso de cálculos via teoria do funcional da densidade, devido a menor demanda computacional, para estudar sistemas desse tipo.
36

Charge Regulation of a Surface Immersed in an Electrolyte Solution

Unknown Date (has links)
In this thesis, we investigate theoretically a new model of charge regulation of a single charged planar surface immersed in an aqueous electrolyte solution. Assuming that the adsorbed ions are mobile in the charged plane, we formulate a field theory of charge regulation where the numbers of adsorbed ions can be determined consistently by equating the chemical potentials of the adsorbed ions to that of the ions in the bulk. We analyze the mean-field treatment of the model for electrolyte of arbitrary valences, and then beyond, where correlation effects are systematically taken into account in a loop expansion. In particular, we compute exactly various one-loop quantities, including electrostatic potentials, ion distributions, and chemical potentials, not only for symmetric (1, 1) electrolyte but also for asymmetric (2, 1) electrolyte, and make use of these quantities to address charge regulation at the one-loop level. We find that correlation effects give rise to various phase transitions in the adsorption of ions, and present phase diagrams for (1, 1) and (2, 1) electrolytes, whose distinct behaviors suggest that charge regulation, at the one-loop level, is no longer universal but depends crucially on the valency of the ions. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
37

Benzyne in synthesis : a search for palladium catalysed three-component couplings

Henderson, Jaclyn January 2008 (has links)
It is over 100 years since scientists first postulated the existence of arynes as reactive intermediates. Their use in organic synthesis is now well-established and investigations into novel methods for their generation and utility in carbon-carbon bond forming reactions continue to this day. In 1983 Kobayashi and co-workers introduced a novel method of generating benzyne under mild conditions, using a fluoride induced decomposition of 2-(trimethylsilyl)phenyl triflate 1. This development has opened the door to employing arynes in a variety of transitionmetal mediated carbon-carbon bond forming processes. Intermolecular carbopalladation, in particular, stands out as a powerful methodology for the construction of diverse 1,2-functionalised arenes through multi-component coupling processes. Initial benzyne carbopalladation with an organopalladium species produces the arylpalladium intermediate 3, which can then undergo a second coupling to any one of the vast numbers of nucleophiles that have been demonstrated to work in palladium cross coupling. Presented herein are investigations towards the realisation of such methodology. Initial efforts focussed on its application to the Heck reaction, using acryates as the nucleophilic component. The chemistry has been developed to incorporate a variety of organo-halides in order to generate a variety of molecular architectures; the resultant 1,2-substituted diaryls being useful in the synthesis of both natural products and medicinal chemistry targets. Following successful development of the Heck reaction, investigations of other palladium catalysed couplings were also undertaken, in particular the Buchwald reaction. Initial mechanistic studies are also discussed.
38

Direct measurement of depletion force between two surfaces with total internal reflection microscopy.

January 2009 (has links)
Xing, Xiaochen. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references. / Abstract also in Chinese. / Abstract (Chinese) --- p.i / Abstract --- p.iii / Contents --- p.v / Acknowledgement --- p.ix / Chapter Chapter1 --- Introduction and background / Chapter 1.1 --- Overview of Studies in Colloid-Polymer mixture --- p.1 / Chapter 1.2 --- Depletion Force in Colloid-Polymer Mixture --- p.1 / Chapter 1.2.1. --- Depletion Interaction in Monodisperse and Neutral Polymer-Colloid Mixtures: Theory --- p.3 / Chapter 1.2.1.1. --- An Exact Result: the Interaction between Parallel Plates due to Ideal Polymer Chains --- p.3 / Chapter 1.2.1.2. --- Penetrable Hard Sphere (PHS) Approach --- p.4 / Chapter 1.2.2. --- Early Experimental Findings of Depletion Interaction --- p.6 / Chapter 1.3 --- References and Notes --- p.8 / Chapter Chapter2 --- Principle of Total Internal Reflection Microscopy (TIRM) and Instrumentation / Chapter 2.1 --- Introduction of Total Internal Reflection Microscopy (TIRM) --- p.10 / Chapter 2.2 --- The Principle of TIRM Technique --- p.11 / Chapter 2.2.1 --- Total Internal Reflection --- p.11 / Chapter 2.2.2 --- Details on Scattering of the Evanescent Wave --- p.13 / Chapter 2.2.3 --- Data Analysis --- p.16 / Chapter 2.3 --- Instrumentation --- p.20 / Chapter 2.3.1 --- Apparatus --- p.20 / Chapter 2.3.2 --- Optical Tweezer --- p.23 / Chapter 2.3.3 --- Cleaning of the Slide Surface --- p.24 / Chapter 2.3.4 --- A Typical Potential Energy Profile --- p.25 / Chapter 2.4 --- Laser Light Scattering (LLS) --- p.26 / Chapter 2.5 --- Zeta-potential Measurements --- p.27 / Chapter 2.6 --- References and Notes --- p.28 / Chapter Chapter3 --- Depletion Attraction between a Polystyrene Sphere and a Hydrophilic Surface in a Pluronic Aqueous Solution / Chapter 3.1 --- Introduction --- p.30 / Chapter 3.2 --- Experimental Section --- p.34 / Chapter 3.2.1 --- Sample Preparation --- p.34 / Chapter 3.2.2 --- Total Internal Reflection Microscopy --- p.35 / Chapter 3.2.3 --- Laser Light Scattering --- p.36 / Chapter 3.3 --- Results and Discussion --- p.37 / Chapter 3.4 --- Conclusion --- p.48 / Chapter 3.5 --- References and Notes --- p.50 / Chapter Chapter4 --- pH-Controllable Depletion Attraction Induced by Microgel Particles / Chapter 4.1 --- Introduction --- p.53 / Chapter 4.2 --- Experimental Section --- p.54 / Chapter 4.2.1 --- Sample Preparation --- p.54 / Chapter 4.2.2 --- Total Internal Reflection Microscopy --- p.56 / Chapter 4.3 --- Results and Discussion --- p.58 / Chapter 4.4 --- Conclusion --- p.63 / Chapter 4.5 --- References and Notes --- p.64 / Publication List --- p.65
39

The role of three-body interactions on the equilibrium and non-equilibrium properties of fluids from molecular simulation

Marcelli, Gianluca, g.marcelli@imperial.ac.uk January 2001 (has links)
The aim of this work is to use molecular simulation to investigate the role of three-body interatomic potentials in noble gas systems for two distinct phenomena: phase equilibria and shear flow. In particular we studied the vapour-liquid coexisting phase for pure systems (argon, krypton and xenon) and for an argon-krypton mixture, utilizing the technique called Monte Carlo Gibbs ensemble. We also studied the dependence of the shear viscosity, pressure and energy with the strain rate in planar Couette flow, using a non-equilibrium molecular simulation (NEMD) technique. The results we present in this work demonstrate that three-body interactions play an important role in the overall interatomic interactions of noble gases. This is demonstrated by the good agreement between our simulation results and the experimental data for both equilibrium and non-equilibrium systems. The good results for vapour-liquid coexisting phases encourage performing further computer simulations with realistic potentials. This may improve the prediction of quantities like critical temperature and density, in particular of substances for which these properties are difficult to obtain from experiment. We have demonstrated that use of accurate two- and three-body potentials for shearing liquid argon and xenon displays significant departure from the expected strain rate dependencies of the pressure, energy and shear viscosity. For the first time, the pressure is convincingly observed to vary linearly with an apparent analytic y2 dependence, in contrast to the predicted y3/2 dependence of mode -coupling theory. Our best extrapolation of the zero -shear viscosity for argon gives excellent agreement (within 1%) with the known experimental data. To the best of our knowledge, this the first time that such accuracy has been achieved with NEMD simulations. This encourages performing simulations with accurate potentials for transport properties.
40

Synthetic stratergies towards a diureidocalix[4]arene / Synthetic strategies towards a diureidocalix[4]arene

Reid, Suazette N. 29 October 2004 (has links)
Self-organization is a common occurrence among molecules in nature and questions of how and why these molecules interact and come together by intermolecular forces has been under investigation by those interested in molecular recognition. Synthetic molecules able to mimic nature have become important in the area of supramolecular chemistry. Calixarenes are a group of molecules that is being investigated for their ability to self-assemble into dimeric capsules. Such capsules can be very useful for catalysis, molecular recognition and for encapsulation. The synthetic stratergies involved in the synthesis of a diureidocalix[4]arene is presented. In this case the taget molecule is a tetrapropylcalix[4]arene substituted on the upper rim with two urea groups separated by a hydrocarbon chain will be synthesized. This molecule can then be used to investigate its dimerization properties.

Page generated in 2.9021 seconds