• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 91
  • 9
  • 7
  • 4
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 139
  • 139
  • 139
  • 36
  • 33
  • 30
  • 28
  • 27
  • 22
  • 21
  • 21
  • 21
  • 20
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

DEVELOPMENT AND EVALUATION OF A DIGITAL SYSTEM FOR ASSEMBLY BOLT PATTERN TRACEABILITY AND POKA-YOKE

Eric J Kozikowski (10716654) 28 April 2021 (has links)
<div>The manufacturing industry has begun its transition into a digital age, where data-driven decisions aim to improve product quality, output, and efficiency. Decisions made based on manufacturing data can help identify key problem areas in an assembly line and mitigate any defects from progressing through to the next step in the assembly process. But what if the products’ as manufactured data was inaccurate or didn’t exist at all? Decisions based on incorrect data can lead to defective parts being passed as good parts, costing manufacturers millions of dollars in rework or recalls. When specifically referring to mechanically fastened assemblies, products that experience rotation, like an aircraft propeller, or compress to create a seal, like an oil pipe flange, all require specific torque pattern sequences to be followed during assembly. When incorrectly torqued, the parts can have catastrophic failures resulting in consumer injury or ecological contamination. This paper outlines the development and feasibility of a system and its components for tracking and error-proofing the assembly of bolted joints in an industrial environment.</div><div>Using a machine vision system, the system traces the tool location relative to the mechanical fastener and records which order the fasteners were torqued in, if an error is detected, the system does not allow the user to progress through the assembly process, notifying if an error is detected. The system leverages open source machine learning algorithms from TensorFlow2 and OpenCv, that allow efficient object detection model training. The proposed system was tested using a series of tests and evaluated using the STEP method. The data collected aims to understand the system's feasibility and effectiveness in an industrial setting. </div><div>The tests aim to understand the effectiveness of the system under standard and variable industrial work conditions. Using the STEP method and other statistical analysis, an evaluation matrix was completed, ranking the system's ability to successfully meet all predetermined benchmarks and successfully record the torque pattern used to assemble apart</div>
112

Cloud-based cost-efficient application and service provisioning in virtualized wireless sensor networks / Approches nuagiques pour le provisionnement d'applications et de services dans les réseaux virtualisés de capteurs sans fil

Khan, Imran 08 July 2015 (has links)
Des Réseaux de Capteurs Sans Fil (RdCSF) deviennent omniprésents et sont utilisés dans diverses applications domaines. Ils sont les pierres angulaires de l'émergence de l'Internet des Objets (IdO) paradigme. Déploiements traditionnels de réseaux de capteurs sont spécifiques à un domaine, avec des applications généralement incrustés dans le RdCSF, excluant la ré-utilisation de l'infrastructure par d'autres applications. Maintenant, avec l'avènement de l'IdO, cette approche est de moins en moins viable. Une solution possible réside dans le partage d'une même RdCSF par de plusieurs applications et services, y compris même les applications et services qui ne sont pas envisagées lors du déploiement de RdCSF. Deux principaux développements majeurs ont conduit à cette solution potentielle. Premièrement, comme les nœuds de RdCSF sont de plus en plus puissants, il devient de plus en plus pertinent de rechercher comment pourrait plusieurs applications partager les mêmes déploiements WSN. La deuxième évolution est le Cloud Computing paradigme qui promeut des ressources et de la rentabilité en appliquant le concept de virtualisation les ressources physiques disponibles. Grâce à ces développements de cette thèse fait les contributions suivantes. Tout d'abord, un vaste état de la revue d'art est présenté qui présente les principes de base de RdCSF la virtualisation et sa pertinence avec précaution motive les scénarios sélectionnés. Les travaux existants sont présentés en détail et évaluées de manière critique en utilisant un ensemble d'exigences provenant du scénario. Cette contribution améliore sensiblement les critiques actuelles sur l'état de l'art en termes de portée, de la motivation, de détails, et les questions de recherche futures. La deuxième contribution se compose de deux parties: la première partie est une nouvelle architecture de virtualization RdCSF multicouche permet l'approvisionnement de plusieurs applications et services au cours du même déploiement de RdCSF. Il est mis en œuvre et évaluée en utilisant un prototype basé sur un scénario de preuve de concept en utilisant le kit Java SunSpot. La deuxième partie de cette contribution est l'architecture étendue qui permet à l’infrastructure virtualisée RdCSF d'interagir avec un RdCSF Platform-as-a-Service (PaaS) à un niveau d'abstraction plus élevé. Grâce à ces améliorations RdCSF PaaS peut provisionner des applications et des services RdCSF aux utilisateurs finaux que Software-as-a-Service (SaaS). Les premiers résultats sont présentés sur la base de l'implantation de l'architecture améliorée en utilisant le kit Java SunSpot. La troisième contribution est une nouvelle architecture d'annotation de données pour les applications sémantiques dans les environnements virtualisés les RdCSF. Il permet en réseau annotation de données et utilise des superpositions étant la pierre angulaire. Nous utilisons la base ontologie de domaine indépendant d'annoter les données du capteur. Un prototype de preuve de concept, basé sur un scénario, est développé et mis en œuvre en utilisant Java SunSpot, Kits AdvanticSys et Google App Engine. La quatrième et dernière contribution est l'amélioration à l'annotation de données proposée l'architecture sur deux fronts. L'un est l'extension à l'architecture proposée pour soutenir la création d'ontologie, de la distribution et la gestion. Le deuxième front est une heuristique génétique basée algorithme utilisé pour la sélection de noeuds capables de stocker l'ontologie de base. L'extension de la gestion d'ontologie est mise en oeuvre et évaluée à l'aide d'un prototype de validation de principe à l'aide de Java kit SunSpot, tandis que les résultats de la simulation de l'algorithme sont présentés / Wireless Sensor Networks (WSNs) are becoming ubiquitous and are used in diverse applications domains. Traditional deployments of WSNs are domain-specific, with applications usually embedded in the WSN, precluding the re-use of the infrastructure by other applications. This can lead to redundant deployments. Now with the advent of IoT, this approach is less and less viable. A potential solution lies in the sharing of a same WSN by multiple applications and services, to allow resource- and cost-efficiency. In this dissertation, three architectural solutions are proposed for this purpose. The first solution consists of two parts: the first part is a novel multilayer WSN virtualization architecture that allows the provisioning of multiple applications and services over the same WSN deployment. The second part of this contribution is the extended architecture that allows virtualized WSN infrastructure to interact with a WSN Platform-as-a-Service (PaaS) at a higher level of abstraction. Both these solutions are implemented and evaluated using two scenario-based proof-of-concept prototypes using Java SunSpot kit. The second architectural solution is a novel data annotation architecture for the provisioning of semantic applications in virtualized WSNs. It is capable of providing in-network, distributed, real-time annotation of raw sensor data and uses overlays as the cornerstone. This architecture is implemented and evaluated using Java SunSpot, AdvanticSys kits and Google App Engine. The third architectural solution is the enhancement to the data annotation architecture on two fronts. One is a heuristic-based genetic algorithm used for the selection of capable nodes for storing the base ontology. The second front is the extension to the proposed architecture to support ontology creation, distribution and management. The simulation results of the algorithm are presented and the ontology management extension is implemented and evaluated using a proof-of-concept prototype using Java SunSpot kit. As another contribution, an extensive state-of-the-art review is presented that introduces the basics of WSN virtualization and motivates its pertinence with carefully selected scenarios. This contribution substantially improves current state-of-the-art reviews in terms of the scope, motivation, details, and future research issues
113

Policy-based usage control for trustworthy data sharing in smart cities / Contrôle des politiques d’accès pour les relations de confiance dans les données des smart cities

Cao Huu, Quyet 08 June 2017 (has links)
Dans le domaine de “smart cities” ou “villes connectées”, les technologies de l’information et de la communication sont intégrées aux services traditionnels de la ville (eau, électricité, gaz, transports collectifs, équipements publics, bâtiments, etc.) pour améliorer la qualité des services urbains ou encore pour réduire les coûts. Les données dans la ville connectée sont généralement produites par une grande variété d’acteurs. Ces données devraient être partagées entre diverses applications ou services. Or, il y a un problème, comment les acteurs peuvent-ils exercer un contrôle sur la façon dont leurs données vont être utilisées? C’est important car pour encourager le partage des données, nous devons établir des relations de confiance entre acteurs. Les acteurs ont confiance s’ils ont la capacité à contrôler l’utilisation de leurs données. Nous prendrons en compte les obligations définies par les acteurs pour leurs données : (i) Abstraction de certaines informations, (ii) Granularité spatio-temporelle, (iii) Classification des acteurs et des objectifs, et (iv) Monétisation des données. Mes contributions sont: (i) Un modèle de contrôle d’utilisation des données. Ce modèle répond aux obligations définies par les acteurs pour leur données. (ii) Une plateforme en tant que service. La plateforme a rajouté des composants nécessaire pour permettre la transparence et la traçabilité d’utilisation des données basée sur le modèle. (iii) Un outil de visualisation. C’est l’implémentation d’un prototype pour que les acteurs puissent exercer un contrôle sur la façon dont leurs données vont être utilisées. (iv) Une évaluation de la performance et l’impact de notre solution. Ces solutions permettent l’établissement des relations de confiance pour le partage des données de Smart Cities basées sur le modèle de contrôle d’utilisation des données. Les résultats de ma thèse peuvent être appliqués à la plateforme IoT Datavenue d’Orange / In smart cities, Information and Communication Technologies, in particular Internet of Things (IoT) Technologies, are integrated into traditional services of our city, for example waste management, air pollution monitoring, and parking to improve quality while reducing costs of these services. IoT data in this context are generated by different actors, such as service providers, developers, and municipal authorities. These data should be shared among applications or services. However, in traditional scenario, there is no sharing of IoT data between them. Each actor consumes data from sensors deployed on behalf of that actor, and network infrastructure maybe shared. In order to encourage IoT data sharing, we need to establish the confidence between the actors. Exercising control over the usage of data by other actors is critical in building trust. Thus, the actors should have an ability to exercise control on how their data are going to be used. This major issue have not been treated in IoT namely Usage Control. In this thesis, we take into account obligations defined by the actors for their data (i) Abstraction of certain information, (ii) Spatial and temporal granularity, (iii) Classification of actors and purposes, and (iv) Monetization of data. For example, requirements of data usage in Intelligent parking applications are (i) Data owners have full access to all the details, (ii) Municipal authorities can access the average occupancy of parking place per street on an hourly basis, (iii) Commercial service providers can access only statistical data over a zone and a weekly basis, and (iv) Monetization of data can be based on subscription types or users roles. Thesis contributions include: (i) Policy-based Data Usage Control Model (DUPO) responds to the obligations defined by actors to their data. (ii) Trustworthy Data Sharing Platform as a Service allows transparency and traceability of data usage with open APIs based on the DUPO and Semantic technologies. (iii) Visualization Tool Prototype enables actors to exercise control on how their data will be used. (iv) Evaluation of the performance and the impact of our solution. The results show that the performance of the added trust is not affecting of the system. Mistrust might hamper public acceptance of IoT data sharing in smart cities. Our solution is key which will establish the trust between data owners and consumers by taking into account the obligations of the data owners. It is useful for data operators who would like to provide an open data platform with efficient enablers to partners, data-based services to clients, and ability to attract partners to share data on their platforms
114

Dissertation_Miller_Alexander_DTECH_5APR2023.pdf

Alexander Thomas Miller (15204598) 12 April 2023 (has links)
<p>The advent and spread of counterfeit goods in medical supply chains is an opportunistic activity by actors who take advantage of information asymmetry between themselves and the rest of the supply chain. Counterfeiters, fraudsters, and companies who intend to cut corners have asymmetric knowledge of the quality (substandard) of the products they possess and are not obligated, but have a disincentive, to share that asymmetric knowledge. This has led to a medical supply chain that is riddled with asymmetric information from consumers, all the way upstream to manufacturers. The asymmetric information present in the supply chain allows agents to take advantage of the demand and chaos in the system to act contrary to the principal’s, in this case the supply chain, best interest as described in the agent-principal theory. The problem related to information asymmetry in principal-agent relationships, including those encapsulated in supply chains, is well documented in prior literature. The missing piece of research deals with quantification of information asymmetry metrics and assessing supply chain of goods.</p> <p>This research explored current and proposed information asymmetry mitigating activities including the potential applications of technology-based methods of reducing information asymmetry within the medical supply chains including distributed ledger technology. Five data aggregation services were searched for relevant literature generating a final sample for analysis of 90 documents (ndocuments = 90). A qualitative meta-analysis methodology was conducted using Nvivo as exploratory research to analyze content in the corpus of documents and extract key themes relevant to each research question then synthesize frequencies of key themes such that information asymmetry in medical supply chains can be decomposed into agents, conditions, and contributing factors.</p>
115

[pt] AGENTES EMBARCADOS DE IOT AUTO-CONFIGURÁVEIS CUONTROLADOS POR REDES NEURAIS / [en] SELF-CONFIGURABLE IOT EMBEDDED AGENTS CONTROLLED BY NEURAL NETWORKS

NATHALIA MORAES DO NASCIMENTO 12 May 2020 (has links)
[pt] Aplicações em Internet das Coisas (IoT) baseadas em agentes têm surgido como aplicações que podem envolver sensores, dispositivos sem fio, máquinas e softwares que podem compartilhar dados e que podem ser acessados remotamente. Essas aplicações vêm sendo propostas em vários domínios de aplicação, incluindo cuidados em saúde, cidades inteligentes e agricultura. Uma terminologia comumente utilizada para representar agentes embarcados inteligentes é embodied agents, a qual é proposta esse trabalho para projetar agentes para o domínio de IoT. Embodied agents significa agentes que possuem corpo, o qual pode ser definido pelos tipos de sensores e atuadores, e controlador, normalmente representada por uma rede neural artificial. Apesar da capacidade de reconfiguração ser essencial para embodied agents inteligentes, existem poucas tecnologias para suportar sistemas reconfigurfuaveis. Além disso, é necessário novas abordagens para lidar com as variabilidades dos agentes e do ambiente, e novos procedimentos para investigar a relação o entre o corpo e o controlador de um embodied agent, assim como as interações entre as mudanças do agente e do ambiente. Além da variabilidade do corpo e do controlador desses agentes, a exemplo do número e tipos de sensores, assim como o número de camadas e tipos de função de ativação para a rede neural, também é preciso lidar com a variabilidade do ambiente em que esses agentes estão situados. A fifim de entender melhor e esclarecer os conceitos de embodied agents, este trabalho apresenta um modelo de referência para embodied agents autoconfifiguráveis de IoT. A partir desse modelo de referência, três abordagens foram criadas para projetar e testar agentes embarcados reconfifiguráeis: i) um software framework para o desenvolvimento de embodied agents no domínio de internet das coisas; ii) uma arquitetura para configurar o corpo e controlador dos agentes de acordo com as variantes do ambiente; e iii) uma ferramenta para testar embodied agents. As abordagens foram avaliadas através de estudos de caso e experimentos em diferentes domínios de aplicação. / [en] Agent-based Internet of Things (IoT) applications have recently emerged as applications that can involve sensors, wireless devices, machines and software that can exchange data and be accessed remotely. Such applications have been proposed in several domains including health care, smart cities and agriculture. Embodied Agents is a term used to denote intelligent embedded agents, which we use to design agents to the IoT domain. Each agent is provided with a body that has sensors to collect data from the environment and actuators to interact with the environment, and a controller that is usually represented by an artificial neural network. Because reconfigurable behavior is key for autonomous embodied agents, there is a spectrum of approaches to support system reconfigurations. However, there is a need for approaches to handle agents and environment variability, and for a broad spectrum of procedures to investigate the relationship between the body and the controller of an embodied agent, as the interaction between the agent and the environment changes. In addition to the body and controller variability of these agents, such as those variations related to the number and types of sensors as well as the number of layers and types of activation function for the neural network, it is also necessary to deal with the variability of the environment in which these agents are situated. A discussion of the embodied agents should have some formal basis in order to clarify these concepts. Notwithstanding, this thesis presents a reference model for selfcon figurable IoT embodied agents. Based on this reference model, we have created three approaches to design and test self-configurable IoT embodied agents: i) a software framework for the development of embodied agents to the Internet of Things (IoT) applications; ii) an architecture to configure the body and controller of the agents based on environment variants; and iii) a tool for testing embodied agents. To evaluate these approaches, we have conducted diffierent case studies and experiments in difierent application domains.
116

[en] A STUDY ON PERVASIVE GAMES BASED ON THE INTERNET OF MOBILE THINGS / [pt] UM ESTUDO SOBRE JOGOS PERVASIVOS BASEADOS NA INTERNET DAS COISAS MÓVEIS

15 January 2019 (has links)
[pt] Jogos pervasivos móveis são jogos que combinam os mundos real e virtual em um espaço híbrido, permitindo interações não apenas com o mundo do jogo virtualmente criado, mas também com o ambiente físico que envolve os jogadores. A Internet de Coisas Móveis (IoMT) especifica situações em que os dispositivos na Internet das Coisas (IoT) podem ser movidos ou se moverem de forma autônoma, mantendo conectividade remota e acessibilidade de qualquer lugar na Internet. Seguindo o enorme sucesso dos recentes jogos pervasivos móveis e a iminente expansão de IoT, nós fornecemos uma integração para toda a tecnologia envolvida no desenvolvimento de um jogo pervasivo móvel que incorpora dispositivos IoT. Também propomos um jogo móvel pervasivo que avalia os benefícios da união de ambos os campos. Este protótipo de jogo explora maneiras de aumentar a experiência dos jogadores através de mecânicas pervasivas, aproveitando a motivação dos jogadores para realizar tarefas de sensoriamento. O jogo também incorpora aplicações sérias na jogabilidade, tais como a localização de instalações e serviços. / [en] Mobile pervasive games are a game genre that combines the real and virtual worlds in a hybrid space, allowing interactions with not only the virtually created game world, but also with the physical environment that surrounds the players. The Internet of Mobile Things (IoMT) specifies situations in which devices on the Internet of Things (IoT) can be moved or move autonomously, while maintaining remote connectivity and accessibility from anywhere on the internet. Following the huge success of recent mobile pervasive games and the coming IoT boom, we provide an integration for all the technology involved in the development of a mobile pervasive game that incorporates IoT devices. We also propose a mobile pervasive game that evaluates the benefits of the union of both fields. This game prototype explores ways of increasing the experience of players through pervasive mechanics while taking advantage of the player s motivation to perform sensing tasks. It also incorporates serious applications into the gameplay, such as the localization of facilities and services.
117

Security Assessment of IoT- Devices Grouped by Similar Attributes : Researching patterns in vulnerabilities of IoT- devices by grouping devices based on which protocols are running. / Säkerhetsbedömning av IoT-Enheter Grupperade efter Liknande Egenskaper

Sannervik, Filip, Magdum, Parth January 2021 (has links)
The Internet of Things (IoT) is a concept that is getting a lot of attention. IoT devices are growing in popularity and so is the need to protect these devices from attacks and vulnerabilities. Future developers and users of IoT devices need to know what type of devices need extra care and which are more likely to be vulnerable. Therefore this study has researched the correlations between combinations of protocols and software vulnerabilities. Fifteen protocols used by common services over the internet were selected to base the study around. Then an artificial neural network was used to group the devices into 4 groups based on which of these fifteen protocols were running. Publicly disclosed vulnerabilities were then enumerated for all devices in each group. It was found that the percentage of vulnerable devices in each group differed meaning there is some correlation between running combinations of protocols and how likely a device is vulnerable. The severity of the vulnerabilities in the vulnerable devices were also analyzed but no correlation was found between the groups. / Sakernas internet eller Internet of things (IoT) är ett koncept som fått mycket uppmärksamhet. IoT enheter växer drastisk i popularitet, därför är det mer nödvändigt att skydda dessa enheter från attacker och säkerhetsbrister. Framtida utvecklare och användare av IoT system behöver då veta vilka enheter som är mer troliga att ha säkerhetsbrister. Denna studie har utforskat om det finns något samband mellan kombinationer av aktiva protokoll i enheter och säkerhetsbrister. Femton vanligt använda protokoll valdes som bas för studien, ett artificiellt neuralt nätverk användes sedan för att gruppera enheter baserat på dessa protokoll. Kända sårbarheter i enheterna räknades upp för varje grupp. En korrelation mellan kombinationer av protokoll och trolighet för sårbarheter hittades. Allvarlighetsgraden av säkerhetsbristerna i sårbara enheter analyserades också, men ingen korrelation hittades mellan grupperna.
118

TEMPENSURE, A BLOCKCHAIN SYSTEM FOR TEMPERATURE CONTROL IN COLD CHAIN LOGISTICS

Matthew L Schnell (13206366) 05 August 2022 (has links)
<p>  </p> <p>Cold chain logistics comprise a large portion of transported pharmaceutical medications and raw materials which must be preserved at specified temperatures to maintain consumer safety and efficacy. An immutable record of temperatures of transported pharmaceutical goods allows for mitigation of temperature-related issues of such drugs and their raw components. The recording of this information on a blockchain creates such an immutable record of this information which can be readily accessed by any relevant party. This can allow for any components which have not been kept at the appropriate temperatures to be removed from production. These data can also be used as inputs for smart contracts or for data analytic purposes. </p> <p>A theoretical framework for such a system, referred to as “TempEnsure” is described, which provides digital capture of the internal temperature of temperature-controlled shipping containers. The data are recorded in a blockchain system. Real world testing of this system was not possible due to monetary constraints, but the functional elements of the system, as well as potential improvements for the system, are discussed.</p>
119

[en] AN ENERGY-AWARE IOT GATEWAY, WITH CONTINUOUS PROCESSING OF SENSOR DATA / [pt] UM ENERGY-AWARE IOT GATEWAY, COM PROCESSAMENTO CONTÍNUO DE DADOS DE SENSOR

LUIS EDUARDO TALAVERA RIOS 30 August 2016 (has links)
[pt] Poucos estudos têm investigado e propôs uma solução de middleware para a Internet das Coisas Móveis (IoMT), onde as coisas inteligentes (Objetos Inteligente) podem ser movidos, ou podem mover-se de forma autônoma, mas permanecem acessíveis a partir de qualquer outro computador através da Internet. Neste contexto, existe uma necessidade de gateways com eficiência energética para fornecer conectividade para uma grande variedade de objetos inteligentes. As soluções propostas têm mostrado que os dispositivos móveis (smartphones e tablets) são uma boa opção para se tornar os intermediários universais, proporcionando um ponto de conexão para os objetos inteligentes vizinhos com tecnologias de comunicação de curto alcance. No entanto, eles só se preocupam apenas sobre a transmissão de dados de sensores-primas (obtido a partir de objetos inteligentes conectados) para a nuvem onde o processamento (e.g. agregação) é executada. Comunicação via Internet é uma atividade de forte drenagem da bateria em dispositivos móveis; Além disso, a largura de banda pode não ser suficiente quando grandes quantidades de informação estão sendo recebidas dos objetos inteligentes. Por isso, consideramos que uma parte do processamento deve ser empurrada tão perto quanto possível das fontes. A respeito disso, processamento de eventos complexos (CEP) é muitas vezes usado para o processamento em tempo real de dados heterogêneos e pode ser uma tecnologia chave para ser incluído nas Gateways. Ele permite uma maneira de descrever o processamento como consultas expressivas que podem ser implantados ou removidos dinamicamente no vôo. Assim, sendo adequado para aplicações que têm de lidar com adaptação dinâmica de processamento local. Esta dissertação descreve uma extensão de um middleware móvel com a inclusão de processamento contínuo dos dados do sensor, a sua concepção e implementação de um protótipo para Android. Experimentos têm mostrado que a nossa implementação proporciona uma boa redução no consumo de energia e largura de banda. / [en] Few studies have investigated and proposed a middleware solution for the Internet of Mobile Things (IoMT), where the smart things (Smart Objects) can be moved, or else can move autonomously, but remain accessible from any other computer over the Internet. In this context, there is a need for energy-efficient gateways to provide connectivity to a great variety of Smart Objects. Proposed solutions have shown that mobile devices (smartphones and tablets) are a good option to become the universal intermediates by providing a connection point to nearby Smart Objects with short-range communication technologies. However, they only focus on the transmission of raw sensor data (obtained from connected Smart Objects) to the cloud where processing (e.g. aggregation) is performed. Internet Communication is a strong battery-draining activity for mobile devices; moreover, bandwidth may not be sufficient when large amounts of information is being received from the Smart Objects. Hence, we argue that some of the processing should be pushed as close as possible to the sources. In this regard, Complex Event Processing (CEP) is often used for real-time processing of heterogeneous data and could be a key technology to be included in the gateways. It allows a way to describe the processing as expressive queries that can be dynamically deployed or removed on-the- fly. Thus, being suitable for applications that have to deal with dynamic adaptation of local processing. This dissertation describes an extension of a mobile middleware with the inclusion of continuous processing of sensor data, its design and prototype implementation for Android. Experiments have shown that our implementation delivers good reduction in energy and bandwidth consumption.
120

An Evaluation of Technological, Organizational and Environmental Determinants of Emerging Technologies Adoption Driving SMEs’ Competitive Advantage

Dobre, Marius January 2022 (has links)
This research evaluates the technological, organizational, and environmental determinants of emerging technologies adoption represented by Artificial Intelligence (AI) and Internet of Things (IoT) driving SMEs’ competitive advantage within a resource-based view (RBV) theoretical approach supported by the technological-organizational-environmental (TOE)-framework setting. Current literature on SMEs competitive advantage as outcome of emerging technologies in the technological, organisational, and environmental contexts presents models focused on these contexts individual components. There are no models in the literature to represent the TOE framework as an integrated structure with gradual levels of complexity, allowing for incremental evaluation of the business context in support of decision making towards emerging technologies adoption supporting the firm competitive advantage. This research gap is addressed with the introduction of a new concept, the IT resource-based renewal, underpinned by the RBV, and supported by the TOE framework for providing a holistic understanding of the SMEs strategic renewal decision through information technology. This is achieved through a complex measurement model with four level constructs, leading into a parsimonious structural model that evaluates the relationships between IT resource-based renewal, and emerging technologies adoption driving SMEs competitive advantage. The model confirms the positive association between the IT resource-based renewal and emerging technologies adoption, and between the IT resource-based renewal and SME competitive advantage for the SMEs managers model, with the SME owners model outcomes are found not being supportive towards emerging technologies adoption driving SME competitive advantage. As methodology, PLS-SEM is used for its capabilities of assessing complex paths among model variables. Analysis is done on three models, one for the full sample, with two subsequent ones for owners and managers, respectively, as SME decision makers, with data collected using a web-based survey in Canada, the UK, and the US, that has provided 510 usable answers. This research has a theoretical contribution represented by the introduction of the IT resource-based renewal concept, that integrates the RBV perspective and the TOE framework for supporting organization’s decision on emerging technologies adoption driving SMEs competitive advantage. As practical implications, this thesis provides SMEs with a reference framework on adopting emerging technologies, offering SME managers and owners a comprehensive model of hierarchical factors contributing to SMEs competitive advantage acquired as outcome of AI and IoT adoption. This research makes an original contribution to the enterprise management, information systems adoption, and SME competitive advantage literature, with an empirical approach that verifies a model of emerging technologies adoption determinants driving SMEs competitive advantage.

Page generated in 0.0841 seconds